
NPS-MV-06-002

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Modeling and 3D Visualization for

Evaluation of Anti-Terrorism/Force Protection Alternatives
Phase II Final Report

Don Brutzman, Curt Blais and Terry Norbraten, Editors

21 November 2006

Approved for public release; distribution is unlimited.

Prepared for: Naval Facilities Engineering Service Center, 1100 23rd Avenue Ocean
Engineering Dept. C51, Port Hueneme, CA 93010

and

The Navy Modeling and Simulation Office

1333 Isaac Hull Ave., Stop 5012
Washington Navy Yard, D.C. 20376-5012

THIS PAGE INTENTIONALLY LEFT BLANK

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

COL David A. Smarsh, USAF Dr. Leonard A. Ferrari
Acting President Provost

This report was prepared for and funded by the Naval Facilities Engineering Service Center, Port
Hueneme, California, and the The Navy Modeling and Simulation Office, Washington Navy
Yard, D.C.
.

Reproduction of all or part of this report is authorized.

This report was prepared by:

______________________ ________________ _______________
Donald P. Brutzman, Ph.D. Curtis L. Blais Terry D. Norbraten
Associate Professor Research Associate Research Associate

Reviewed by: Released by:

______________________ _________________________
Rudolph P. Darken, Ph.D. Dan C. Boger
Director, MOVES Institute Interim Associate Provost and

Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
21 November 2006

3. REPORT TYPE AND DATES COVERED
Project Final Technical Report, 01 OCT 2005 – 30 SEP 2006

4. TITLE AND SUBTITLE:
Modeling and 3D Visualization for Evaluation of Anti-Terrorism/Force
Protection Alternatives Phase II Final Report

6. AUTHORS: Don Brutzman, Curtis L. Blais and Terry D. Norbraten, Eds.

5. FUNDING NUMBERS
 N0002506WR06603

and
N0001406WR20154

7. PERFORMING ORGANIZATION NAME AND ADDRESS
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
NPS-MV-06-002

9. SPONSORING /MONITORING AGENCY NAME AND ADDRESS
Naval Facilities Engineering Service Center (NFESC)
1100 23rd Avenue
Ocean Engineering Dept. C51
Port Hueneme, CA 93010

Navy Modeling & Simulation Office (NMSO)
1333 Isaac Hull Ave., Stop 5012
Washington Navy Yard, D.C. 20376-5012

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES: The views expressed in this report are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT
 Modern Modeling and Simulation (M&S) techniques offer flexible, economical capabilities for assessing naval installation security

systems, equipment and Concepts of Operations (CONOPS). These tools are useful for assessing risk and vulnerability in a broad range
of operational situations and in response to a spectrum of threat scenarios. Of particular interest to both military and homeland-defense
analysts is the combined shore-side and water-side protection of naval and harbor facilities.

In August of 2005, the NPS MOVES Institute was funded by the Naval Facilities Engineering Service Center (NFESC) to investigate
and develop such an analytic tool. This report describes the work accomplished during Phase II of the Modeling and 3D Visualization
for Evaluation of Anti-Terrorism/Force Protection Alternatives project in order to achieve that goal.

Waterside protection includes surveillance (detection and assessment), delay (e.g., barriers), and warning and response means (e.g.,
patrol craft). The purpose of the Phase II effort was to develop an analysis tool that supports assessment of the effectiveness of various
sensor, barrier, and response systems to enable decision-makers to make good judgments on what to purchase and employ. For example,
if there is no physical barrier in a port to protect naval assets then when does a threat need to be detected to permit sufficient time to
intercept/neutralize and how many patrol craft and/or weapon stations are needed to provide an acceptable level of protection?
Alternatively, if a barrier is employed that effectively stops all small boats for a designated period of time, then when does detection need
to occur and how many patrol boats are needed for the same level of protection? With various surveillance system assets (including
surface and/or subsurface sensors), how much time is available between detection/reporting and response?

The selection of effective combinations of sensors, barriers, and response systems requires a tool that can represent all these various
assets and physical factors, providing insights into the most effective combinations that provide an acceptable level of protection at the
least cost (in terms of manpower and dollars) and least risk (in terms of lives and infrastructure).

15. NUMBER OF PAGES

171

14. SUBJECT TERMS
Anti-Terrorism/Force Protection (ATFP), Installation Security, Harbor Defense Modeling and
Simulation (M&S), Discrete Event Simulation (DES), Design of Experiments (DOE), Simulation
Analysis 16. PRICE CODE
17. SECURITY
CLASSIFICATION OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

ABSTRACT

Modern Modeling and Simulation (M&S) techniques offer flexible, economical

capabilities for assessing naval installation security systems, equipment and Concepts of

Operations (CONOPS). These tools are useful for assessing risk and vulnerability in a broad

range of operational situations and in response to a spectrum of threat scenarios. Of particular

interest to both military and homeland-defense analysts is the combined shore-side and water-

side protection of naval and harbor facilities.

In August of 2005, the NPS MOVES Institute was funded by the Naval Facilities

Engineering Service Center (NFESC) to investigate and develop such an analytic tool. This

report describes the work accomplished during Phase II of the Modeling and 3D Visualization

for Evaluation of Anti-Terrorism/Force Protection Alternatives project in order to achieve that

goal.

Waterside protection includes surveillance (detection and assessment), delay (e.g.,

barriers), and warning and response means (e.g., patrol craft). The purpose of the Phase II effort

was to develop an analysis tool that supports assessment of the effectiveness of various sensor,

barrier, and response systems to enable decision-makers to make good judgments on what to

purchase and employ. For example, if there is no physical barrier in a port to protect naval assets

then when does a threat need to be detected to permit sufficient time to intercept/neutralize and

how many patrol craft and/or weapon stations are needed to provide an acceptable level of

protection? Alternatively, if a barrier is employed that effectively stops all small boats for a

designated period of time, then when does detection need to occur and how many patrol boats

are needed for the same level of protection? With various surveillance system assets (including

surface and/or subsurface sensors), how much time is available between detection/reporting and

response?

The selection of effective combinations of sensors, barriers, and response systems

requires a tool that can represent all these various assets and physical factors, providing insights

into the most effective combinations that provide an acceptable level of protection at the least

cost (in terms of manpower and dollars) and least risk (in terms of lives and infrastructure).

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ACKNOWLEDGEMENTS

The Naval Postgraduate School Modeling, Virtual Environments, and Simulation

(MOVES) Institute thanks the many people who made the Phase II effort of this ongoing project

such a success.

To Robert Taylor, Naval Facilities Engineering and Service Center (NFESC), and his

assistant Alexandra Devisser for sponsoring the work and providing management guidance

throughout the life of this project.

To John Moore and his team at the Navy Modeling & Simulation Office for his continued

support of the MOVES Institute at NPS for this and countless other ongoing M&S projects.

To Alan Hudson, Yumetech, Inc. and his team for many hours spent on software

engineering of the Xj3D browser, SavageStudio and 3D model archives and for many hours of

consultations.

To Chris Greuel, Dan Ancona and Carlos Newcomb and the Planet 9 team for superb 3D

modeling of Pearl Harbor and other ports used in this project.

To Dallas Meggit, Dennis Garrood, Roger Christiansen and Mario Pozzo and the Sound

and Sea Technologies (S&ST) team for expert project guidance and sub-contracting support.

To Rick Goldberg of Aniviza, Inc. for his many hours spent developing Viskit and the

many improvements made in support of LT Sullivan’s thesis research.

To Tony Parisi and Keith Victor and the Media Machines, Inc. team for great work in

incorporating X3D support in open source Flux Studio code base.

To Robert Landsdale, Andrew Grieve and the Okino Computer Graphics, Inc. team for

their contributions in support of X3D rendering.

To Len Daly of Daly Realism for his contributions in help file set and documentation

throughout the project duration.

To Margaret Bailey, Doug Nelson and the Sonalysts, Inc. team for their support of sonar

physics modeling.

To LT Patrick Sullivan, USN for his research efforts which propelled the ATFP project

into the forefront through countless demonstrations to various agencies and commands.

To LCDR Travis Rauch, USN for his research into SMAL which greatly simplified auto-

generation of 3D scenarios.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

1.0 INTRODUCTION..1
1.1 BACKGROUND ..1
1.2 PROJECT OBJECTIVES...3

1.2.1 Phase I Project Objectives...3
1.2.2 Phase I Project Accomplishments ..3
1.2.3 Phase II Project Objectives ...4
1.2.4 Phase II Project Accomplishments...5

1.3 PROJECT MANAGEMENT ORGANIZATION ..9
1.3.1 Naval Postgraduate School (NPS) ..9
1.3.2 Naval Facilities Engineering Service Center (NFESC)9
1.3.3 Sound and Sea Technologies (S&ST)...9
1.3.4 Yumetech, Inc...10
1.3.5 Aniviza, Inc...10
1.3.6 Planet 9 Studios ..10
1.3.7 Media Machines ...10
1.3.8 Okino Computer Graphics, Inc. ...10
1.3.9 Daly Realism...10
1.3.10 Sonalysts..11

1.4 ORGANIZATION OF THIS REPORT...11

2.0 NAVAL INSTALLATION SECURITY MODELING & SIMULATION...........13
2.1 NAVAL INSTALLATION SECURITY M&S OBJECTIVES13
2.2 NAVAL INSTALLATION SECURITY M&S REQUIREMENTS..........13
2.3 AT/FP ANALYSIS TOOL SOFTWARE REQUIREMENTS14

3.0 PHASE II PARTNER CONTRIBUTIONS...17
3.1 INTRODUCTION..17
3.2 NAVAL POSTGRADUATE SCHOOL...17

3.2.1 LCDR Travis Rauch, USN Thesis ..17
3.2.2 LT Pat Sullivan, USN Thesis ..18

3.3 SOUND & SEA TECHNOLOGIES (S&ST)...18
3.3.1 Overview of S&ST Contributions ..18
3.3.2 S&ST Team ..20

3.4 ANIVIZA ..21
3.4.1 Overview ...21
3.4.2 Activities Performed ..21
3.4.3 Aniviza Team..23

3.5 DALY REALISM...23
3.5.1 Overview ...23
3.5.2 Previous Work..23
3.5.3 Scope of Work ..24
3.5.4 Activities Performed ..24
3.5.5 Deliverables Completed...25
3.5.6 Recommendations for Future Work ..25

 vii

3.5.7 Daly Realism Team..26
3.6 MEDIA MACHINES...26

3.6.1 Overview ...26
3.6.2 Scope of Work ..26
3.6.3 Activities Performed ..26
3.6.4 Media Machines AT/FP Team..27

3.7 OKINO COMPUTER GRAPHICS ...28
3.7.1 Overview ...28
3.7.2 Primary Task Groups..28
3.7.3 Main Development Achievements ..30
3.7.4 Okino AT/FP Team..31

3.8 PLANET 9 STUDIOS..31
3.8.1 Overview ...31
3.8.2 Previous Work..31
3.8.3 Scope of Work ..32
3.8.4 Activities Performed ..33
3.8.5 Deliverables Completed...36
3.8.6 Recommendations for Future Work ..38
3.8.7 Planet 9 Studios AT/FP Team...40

3.8 SONALYSTS..41
3.8.1 Overview ..41
3.8.2 Progress to date:...41
3.8.3 Recommendations for future work ..41
3.8.4 Sonalysts Team...42

3.9 YUMETECH..42
3.9.1 Progress to Date ...42
3.9.2 Future Development ..44

3.9.2.1 Location Set-up ...44
3.9.2.2 Barrier Representation ...45
3.9.2.3 Property Editor..45
3.2.9.4 Statistical/Visualization Tool Improvements46
3.9.2.5 3D Viewer Improvements..46
3.9.2.6 Automating the Integration of Savage Studio with the
 Savage Library ...47
3.9.2.7 Day/Night/Weather Effects...48

3.9.3 Yumetech, Inc. Team...48

4.0 SUMMARY AND CONCLUSIONS ..49
4.1 M&S WORKSHOP CONCLUSIONS FROM
 (BRUTZMAN ET AL. 2006)...49
4.2 PHASE II CONCLUSIONS AND RECOMMENDATIONS50

APPENDIX A. NAVAL INSTALLATION SECURITY MODELING AND
SIMULATION WORKSHOP ..51
ATTENDEE LIST: ..51
NAVAL INSTALLATION SECURITY MODELING AND SIMULATION

WORKSHOP AGENDA:..52
Workshop Day 1: May 9, 2006 Tuesday ..52

 viii

Workshop Day 2: May 10, 2006 Wednesday...53
Workshop Day 3: May 11, 2006 Thursday (organizers only)....................53

APPENDIX B. INSTALLATION/OPERATION TUTORIAL AT NPS MOVES
OPEN HOUSE, AUGUST 7, 2006..55

APPENDIX C. AT/FP PROJECT FLYER..57

APPENDIX D. MODELING AND SIMULATION WORKSHOP CD-ROM61

APPENDIX E. DISKIT SENSOR AND MOVER DYNAMICS:
LOGARITHMICALLY RANGED ATTENUATED TRANSMISSION LOSS
SONAR ..63
E.1 DISKIT SENSOR AND MOVER DYNAMICS..64

E.1.1 Overview ...64
E.1.2 DISMover3D...65
E.1.3 Sensors, Targets and Mediators ...67
E.1.4 ScenarioManager ...73
E.1.5 Example Multisectioned Log Range Attenuated Transmission
 Loss Sonar (MiltiLRATL)...74

APPENDIX F: PLANET 9 PRESENTATION SLIDESETS.................................103
F.1 INTRODUCTION..103
F.1 BUILDING GEO-REGISTERED X3D ...104
F.2 3D GEOSPATIAL DATA INTERFACES AND TOOLS........................111

APPENDIX G: PHASE II TECHNICAL SUMMARY OF X3D

 MODEL CONSTRUCTION...117
G.1 PLANET 9 STUDIOS ART TEAM ...117

Overview ...117
Terrain ..117
Buildings ...122
Aids to Navigation..125
Compass Rose...129
Port Security Barrier...131
X3D Model Locations ..133
Planet 9 Studios AT/FP Art Team..133

GLOSSARY OF TERMS AND ACRONYMS..135

REFERENCES...143

INITIAL DISTRIBUTION LIST ...145

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1. Overall Software Architecture for the Anti-Terrorism/Force Protection
 (AT/FP) Analysis Tool (From Phase II SOW 2006) ...6
Figure 2. POA&M for Phase II Efforts (Part I) (From Phase II SOW 2006)7
Figure 3. POA&M for Phase II Efforts (Part II) (From Phase II SOW 2006)8
Figure 4. May 2006 M&S Workshop CD Cover Image ...61
Figure 5. Simkit, Viskit, Diskit Platform Relationships..64
Figure 6. DISMover3D Entity in Event Graph Form..65
Figure 7. DISMover3D Parameters...66
Figure 8. State Variables for the DISMover3D Entity..66
Figure 9. Diagram of Cancelling Invalid Pending Events Due to Change in Target
 Velocity Vector State...68
Figure 10. Simple SonarMediator Event Graph ...73
Figure 11. Looking Down on “Sweep” ...74
Figure 12. Baffle Geometry divided into triangular sections, viewed from above75
Figure 13. Side View of Approximation Geometry. First cut, “watermelon” slices.75
Figure 14. Further Simplification of Volume Geometry...76
Figure 15. Final Geometry of Volume Space..76
Figure 16. EnterRange and ExitRange Point Depicted ...79
Figure 17. Energy Potential Calculus..79
Figure 18. Showing Comparison between an Inner and Outer Approximation to the
 Sphere by a Facet. ..87
Figure 19. CheckDetection Event Graph ..95
Figure 20. Adding the MultiLRATLSonar as a drop in component.................................101
Figure 21. Debug Output from a Random Run of IndianIslandSonarTest in Viskit......102
Figure 22. Oahu and Pearl Harbor Terrain Grids Optimized ..118
Figure 23. Oahu and Pearl Harbor Terrains Drapped with Imagery119
Figure 24. Oahu and Pearl Harbor Terrain Grids Designated...119
Figure 25. Pearl Harbor Buildings Grouped into Five Separate Files Determined by

Location. ..122
Figure 26. Example Building/Terrain File Dependency Chart124
Figure 27. Example ATON X3D Code (VRML Syntax) with One Range Light and
 Two Lights ...128
Figure 28. Example ATON X3D Scene with One Range Light (in distance) and
 Two Lights ...129
Figure 29. Example Compass Rose X3D Code (VRML Syntax)130
Figure 30. X3D Example Compass Rose Scene First Looking North, then Northwest..130
Figure 31. Example PSB X3D Code (VRML Syntax)..132
Figure 32. X3D Example PSB Scene First with One Section, then Three Sections.132

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1. List of Phase II Accomplishments by Partners (From Phase II SOW 2006).....5
Table 2. Table showing sample values of AT used for various frequencies of interest.91
Table 3. Various Resolution Version of the Oahu Terrain ..120
Table 4. Individual Grid Sections of the Oahu Terrain..120
Table 5. Example File Names for the Single Pearl Harbor Grid Section A1121
Table 6. Aids to Navigation X3D Proto Models - RangeLight126
Table 7. Aids to Navigation X3D Proto Models – Daybeacon....................................126
Table 8. Aids to Navigation X3D Proto Models – LightPrototype127
Table 9. Aids to Navigation X3D Proto Models – LightedBouyPrototype127
Table 10. Aids to Navigation X3D Proto Models – LightPostPrototype.......................127
Table 11. Compass Rose X3D PROTO Attributes and Options....................................130
Table 12. Port Security Barrier X3D PROTO attributes and options:...........................131

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

1.0 INTRODUCTION

Modeling and Simulation (M&S) techniques offer flexible, economical capabilities for

assessing naval installation security systems, equipment and Concepts of Operations (CONOPS).

These tools are useful for assessing risk and vulnerability in a broad range of operational

situations and in response to a spectrum of threat scenarios. Of particular interest to both

military and homeland-defense analysts is the combined shore-side and water-side protection of

naval and harbor facilities.

1.1 BACKGROUND
The primary products for this phase of work are the Sullivan thesis, the Rauch Thesis, the

M&S Workshop and the software and models distributions. This report provides additional

amplifying information.

The Systems Engineering tasks associated with the naval installation security span the

breadth of Navy CONUS and OCONUS bases. They must cover many existing “legacy” and

proposed new systems. The Systems Engineering effort includes analysis, trades, and

requirements definition and refinement. The outputs will provide the basis for recommendations

for procurement, training methods, concepts of operation – in other words, all standard outputs

from the Systems Engineering process for systems that are to meet the operational needs of the

naval installation security initiative.

The challenges facing the naval installation security problem are complicated by the

widely varying nature of the threats to be addressed, by the diversity of existing systems,

equipment and Concept of Operations (CONOPS), and by the fact that there are more than 100

U.S. naval facilities, each of which can be expected to have a different set of Anti-

Terrorism/Force Protection (AT/FP) requirements and solutions for harbor defense and

installation security. As a result, it is simply not practical to conduct these analyses on a purely

empirical basis by installing and trying different combinations of equipment and systems. A

better, more cost-effective approach for Systems Engineering analysis is needed (sponsor sets the

requirements).

A widely accepted methodology for dealing with complex systems is the use of M&S.

M&S tools allow a user – from the analyst to the civilian administrator to the military operator –

 1

to assemble simplified representations of actual systems that allow an understanding of

underlying relationships among sensors, combatants and their behaviors, all against the backdrop

of 3D, immersive displays of actual locations such as a harbor and surrounding areas.

The abstract from (Harney 2003) describes the genesis of this project:

Despite the many advances achieved within both Modeling and Simulation and
Information Technology over the past several decades, practical application of
such technology remains under-utilized by operational units in the United States
Navy. Furthermore, when such technology has been deployed in the last decade it
has been to exercise operator proficiency or increase C4I battlespace awareness.
Few tools have allowed operational warfighters to run ‘what-if’ simulation
scenarios to aid in development of tactical plans for executing published doctrine.

The approach taken in this thesis is to select an exemplar warfare area, in this case
Anti-Terrorism and Force Protection for Navy ships, and through research and
development to identify, develop, and deploy the necessary modeling and
simulation (M & S) technologies to demonstrate a prototypical planning tool that
can be used by today’s deployed warfighter. All research and work is conducted
in a web-based, ‘user-centric’ fashion utilizing a combination of user-driven and
agent-based control of entities for simulation iterations, along with various open
source technologies which include Extensible 3D Graphics (X3D), Scalable
Vector Graphics (SVG), and Extensible Markup Language (XML). Conventions
are demonstrated for the integration of the many academic disciplines utilized
during this research to achieve automatic generation of tactically significant
scenarios. In order to give the end-user the greatest insight towards potential
drawbacks in the tactical planning against surface-borne terrorist threats, various
2D and 3D media provide both real-time and non-real time scenario playback.

The result of this work is a fully integrated, prototypical, Java-based application
that demonstrates how various Open-Source, web-based technologies can be
applied in order to provide the tactical operator with tools to aid in Force
Protection planning. Scenarios can be auto generated, viewed, analyzed, and
manipulated by end users with little to no computer experience necessary beyond
requirements for operation of a desktop personal computer (PC) in the
Information Technology for the 21st Century (IT-21) environment at sea. This
approach has broad applicability to improve the tactical awareness and defensive
posture of ships defending against terrorist attacks in port.

 2

1.2 PROJECT OBJECTIVES
The primary intended outcome of the project is to:

• Communicate general goals for improving naval installation security through M&S

• Define potential goals for M&S programs that support implementation of naval

installation security systems

• Discuss candidate M&S requirements for naval installation security studies and

analyses

• Describe and demonstrate relevant M&S capabilities and approaches

• Assess the state-of-the-art in M&S as related to naval installation security

• Identify potential areas for data interchange and collaboration through data and model

sharing

• Identify the most productive areas for further M&S development

• Explore how to create broader-based tool support for tactical analysis of harbor risk

and vulnerabilities.

1.2.1 Phase I Project Objectives
During the Phase I effort, the decision was made to integrate the extended capabilities for

a AT/FP Visualization and Analysis Tool into a different established code base, the Autonomous

Unmanned Vehicle (AUV) Workbench (AUVW). This tool provides 2D and 3D mission

planning and mission execution with integrated vehicle dynamics and basic sensor physics. The

current open source code base provides a more extensive framework for addition of capabilities

and features to meet requirements of the AT/FP analysis tool.

1.2.2 Phase I Project Accomplishments
Accomplishments from the Phase I effort conducted through the first two quarters of

fiscal year 2005 set the foundation for continuing work. This work included:

• 3D modeling of NAVMAG Indian Island, Washington, including development of

Ammunition Pier, nearby buildings, and surrounding terrain

 3

• 3D modeling and texture mapping of NAVSTA Bremerton, Washington, including

development of piers, near shore buildings, and surrounding terrain

• 3D modeling of port security barriers and a selection of water craft

• Further development of existing software infrastructure in Xj3D, including initial

efforts to integrate the open-source Open Dynamics Engine (ODE) software library

• Gathering geospatial information sets for multiple locales

• Gathering technical information for barriers and sensors

• User interface design for the overall planning and assessment tool

• Establishing working relationships and coordination mechanisms across the project

team (NFESC, Sound&Sea Technologies, NPS, Planet 9, and Yumetech)

1.2.3 Phase II Project Objectives
Waterside protection includes surveillance (detection and assessment), delay (e.g.,

barriers), and warning and response means (e.g., patrol craft). The purpose of the proposed

effort is to develop an analysis tool that supports assessment of the effectiveness of various

sensor, barrier, and response systems to enable decision-makers to make good judgments on

what to purchase and employ. For example, if there is no physical barrier in a port to protect

naval assets then when does a threat need to be detected to permit sufficient time to

intercept/neutralize and how many patrol craft and/or weapon stations are needed to provide an

acceptable level of protection? Alternatively, if a barrier is employed that effectively stops all

small boats for a designated period of time, then when does detection need to occur and how

many patrol boats are needed for the same level of protection? With various surveillance system

assets (including surface and/or subsurface sensors), how much time is available between

detection/reporting and response? The selection of effective combinations of sensors, barriers,

and response systems requires a tool that can represent all these various assets and physical

factors, providing insights into the most effective combinations that provide an acceptable level

of protection at the least cost (in terms of manpower and dollars) and least risk (in terms of lives

and infrastructure).

 4

1.2.4 Phase II Project Accomplishments
Allocation of AT/FP Visualization and Analysis Tool SOW Tasks to Performers

SOW
Para

Task NPS Planet 9 Yumetech Aniviza Daly
Realism

Sonalysts Media
Machines

Okino

4.1 Port and Port
Facility Modeling

4.1.1 Indian Island and
Bremerton
Visualization
Improvements

X PRIME X X

4.1.2 Pearl Harbor and Port
Hueneme
Visualizations

X PRIME X X

4.1.3 Assess Shore-Side
integration

PRIME

4.1.4 Physics-based
models

PRIME X X X

4.1.4.1 Sonar modeling PRIME X

4.1.5 DNC load/display X PRIME X

4.1.6 Navy C2 in tool
modeling

PRIME

4.1.7 X3D Tool Updates X PRIME(1) PRIME(2)

4.2 Analysis Tool
Development

4.2.1 Integration with
AUVW

PRIME X X X X

4.2.2 GUI for scenario set-
up

X PRIME X X

4.2.3 Simkit scenario
creation

X PRIME X

4.2.4 Experimental design
tool

X PRIME X

4.2.5 Analysis report-
writing

PRIME

4.2.6 Web3D 2D/3D UI
Working Group

X X PRIME X X

4.2.7 NMCI/IT-21 PRIME X X

4.2.8 Configuration control PRIME X X X X

4.2.9 Remainder FY05
activities

X X X X

4.2.10 Computing Cluster PRIME

4.3 Education and
Training

 Instructional materials X PRIME X

 Conduct training PRIME X

 Documentation X X X X PRIME

4.4 Team coordination
and management

PRIME X X X X X X X

4.5 Record follow-on
requirements

PRIME X X X X

 NOTE: "PRIME" means primary responsibility for execution of the task.
 (1) VizX3D product update; (2) Polytrans product update

Table 1. List of Phase II Accomplishments by Partners (From Phase II SOW 2006)

 5

Figure 1. Overall Software Architecture for the Anti-Terrorism/Force Protection (AT/FP)

Analysis Tool (From Phase II SOW 2006)

 6

Figure 2. POA&M for Phase II Efforts (Part I) (From Phase II SOW 2006)

 7

Figure 3. POA&M for Phase II Efforts (Part II) (From Phase II SOW 2006)

 8

1.3 PROJECT MANAGEMENT ORGANIZATION

1.3.1 Naval Postgraduate School (NPS)
Donald P. Brutzman, Ph.D., NPS Principal Investigator (PI)

Arnold Buss, Ph.D., Simkit Software Engineer

Mike Bailey, Viskit Software Engineer

Don McGregor, High Performance Computing (HPC) Cluster Engineer

Jeff Weekley, 3D Modeler

LCDR Travis Rauch, USN, Thesis Researcher

LT Patrick Sullivan, USN, Thesis Researcher

Curt Blais, Project Support, Final Report Editor

Terry Norbraten, Project Support, Final Report Editor

1.3.2 Naval Facilities Engineering Service Center (NFESC)
Mr. Robert Taylor

Alexandria De Visser

1.3.3 Sound and Sea Technologies (S&ST)
Dallas Meggit

Dennis Garrood

Mario Pozzo

Roger Christiansen

Denise Bjorling

 9

1.3.4 Yumetech, Inc.
Alan Hudson, CEO

Justin Couch

Stephen Matsuba

1.3.5 Aniviza, Inc.
Rick Goldberg, CEO

1.3.6 Planet 9 Studios
David Colleen, CEO

Chris Greuel, 3D Model Engineer

Dan Ancona, Documentation and Training

Carlos Newcomb, 3D Imagery

1.3.7 Media Machines
Tony Parisi, CEO

Keith Victor, Software Engineer

1.3.8 Okino Computer Graphics, Inc.
Robert Landsdale, CEO

Andrew Grieve

1.3.9 Daly Realism
Leonard Daly, CEO, Software Documentation

 10

1.3.10 Sonalysts
Margaret Bailey

Doug Nelson, Physics Modeling

1.4 ORGANIZATION OF THIS REPORT
Chapter 1 is the introduction of this report and covers the overview and objectives of

Phase II efforts. Chapter 2 covers the objectives and requirements of the May 2006 M&S

Workshop. Chapter 3 highlights two thesis abstracts and the Phase II partner contributions and

final reports submitted by each. Chapter 4 covers the summary and conclusions of this final

report. Appendix A lists the attendees and the agenda of the May 2006 M&S Workshop.

Appendix B lists the MOVES Open House 2006 tutorial agenda for the AT/FP Analysis Tool.

Appendix C contains the AT/FP Project Flyer. Appendix D contains information on how to

obtain a copy of the FOUO May 2006 M&S Workshop. Appendix E contains a white paper

covering Diskit Sensor and Mover dynamics by Rick Goldberg, Aniviza, Inc. Appendix F

contains Planet 9 slidesets detailing 3D model construction techniques. Appendix G concludes

this report with a technical summary of Phase II efforts from Planet 9 Studios.

 11

THIS PAGE INTENTIONALLY LEFT BLANK

 12

2.0 NAVAL INSTALLATION SECURITY MODELING & SIMULATION

2.1 NAVAL INSTALLATION SECURITY M&S OBJECTIVES
Broadly stated, the objectives of naval installation security M&S are to:

• Develop open-source/open standards (nonproprietary) modeling and simulation tools

to evaluate contributions of system and equipment alternatives to Naval and U.S.

Coast Guard installation security effectiveness. This is envisioned to include a series

of tools of differing complexity and fidelity for different applications.

• Develop and evaluate concepts of layered defense using existing, emerging and

potential future physical security and Command, Control, Communications,

Computers and Intelligence (C4I) systems and equipment.

• Facilitate the evaluation of equipment and systems in the models by providing an

industry standard (e.g., Microsoft EXCEL®) interface for outputting simulation

initial conditions and results. This interface will provide the user an efficient and

tailored way of reporting and displaying the data and will facilitate the use of data

post-processors for the generation of user-defined Measures of Performance (MOPs)

and Measures of Effectiveness (MOEs).

2.2 NAVAL INSTALLATION SECURITY M&S REQUIREMENTS
A preliminary set of M&S requirements to meet the objectives listed above include:

• Perform physically-based statistical assessment and visualization to evaluate the

effectiveness of sensors, barriers, and response systems for naval installation

security.

• Be a true tool set (i.e., not a site-specific simulation), structured so the users can

select model fidelity and scale into a simulation that provides a realistic solution to

their particular problem.

• Provide realistic, extensible, 3D visualization models of bases and surrounding

environment, including bodies of water, together with high-fidelity, physics-based

sensor, dynamics and damage assessment models.

 13

• Include the capability for the design of problems and scenarios and implementation

of these problems on clusters of computers or a dedicated DoD supercomputing

facility.

• Support training in a dynamic, realistic environment for boat handling, weapons,

tactical control, and all other areas of waterside and shoreside security and response.

• Allow quantitative evaluation of the performance of sensors and systems of sensors

through “hardware-in-the-loop” simulations.

• Support the conduct of pre-mission planning/post mission analysis.

• Provide quick results to common naval installation security problems through the

use of a library of pre-worked simulations.

• Provide tools to allow easy generation of a notional harbor (in 3D), suitable objects

and behaviors for training and demonstration purposes.

• Implement the M&S tools in an open-source software environment to eliminate

dependence on proprietary software, or a single or limited number of vendors, and to

eliminate recursive DoD costs for such software.

• Provide interfaces to internal calculated results and external programs such as

MathWorks’ MATLAB® and Microsoft EXCEL® for user defined report

generation.

2.3 AT/FP ANALYSIS TOOL SOFTWARE REQUIREMENTS
AT/FP Harbor Security Visualization and Analysis Tool Development – In addition

to visualization of the environment to aid in understanding employment of security resources, an

analysis tool is needed to configure and run experiments to evaluate the effectiveness of different

combinations of AT/FP assets against a variety of threats. Refer to Figure 1 for an overview of

the major software components of this tool. The NPS team will perform the following subtasks

to design, develop, test, and demonstrate an AT/FP Harbor Security Visualization and Analysis

Tool:

Integration with AUVW: Integrate AT/FP modeling with the AUV Workbench code

base to create the AT/FP Harbor Security Visualization and Analysis Tool.

 14

GUI for Scenario Set-up: Design and begin development and testing of a user interface

to facilitate selection of a locale and configuration of platforms, sensors, countermeasures,

threats, and other assets involved in AT/FP studies.

Simkit Scenario Creation: Design, develop, and test scenario simulation using the

Simkit Discrete Event Simulation (DES) Application Program Interface (API). Simulation

modeling will use the Viskit visual event graph tool for retention and reuse of modeling

components.

Experimental Design Tool: Create an experimental design and execution harness for

conducting analyses using the AT/FP Harbor Security Visualization and Analysis Tool. Utilize

low-cost computer clusters for heavy-duty computational performance.

Analysis Report-writing: Design and develop an analysis report-writing capability to

facilitate preparation of reports providing analysis results from the tool. Target audiences

include AT/FP acquisition officers, AT/FP harbor supervisors, and AT/FP officers on ships

entering port.

Web3D 2D/3D UI Working Group: Participate in the 2D/3D User Interface (UI)

Working Group in the Web3D Consortium. The GUI design of the AT/FP Harbor Security

Visualization and Analysis Tool is critical to its rapid adoption and effective employment. This

is a sophisticated and complicated area of software design; however, the solution in the tool

development will be evolving as problems are resolved. Participation in this group will ensure

that best-practice design patterns are utilized and combined repeatably. Web3D Consortium

membership is required for participation.

NMCI Port: Identify expected user operational hardware/software configurations and

determine the most effective means for deploying (or making available) the software, data, and

analytical capabilities into those environments (e.g., NMCI environment).

 15

Configuration Control: Maintain the code base under configuration management and

prepare software installation packages.

Remainder FY05 Activities: For FY2005, complete subtask 4.1.1 and commence

subtasks 4.1.2 plus all follow-on subtasks.

Computing Cluster: Obtain and configure hardware and software for a high

performance cluster environment to support rapid execution of AT/FP analyses.

 16

3.0 PHASE II PARTNER CONTRIBUTIONS

3.1 INTRODUCTION
This effort was only able to get underway with the contributions of each and every

component/partner/researcher assigned to this project. Listed in this section are abstracts from

two theses, written by Naval Officers who conducted research on vital pieces of this project, and

the Phase II final reports generated from work performed in support by contributing partners.

3.2 NAVAL POSTGRADUATE SCHOOL

3.2.1 LCDR Travis Rauch, USN Thesis

Abstract from (Rauch 2006):

Visualizing operations environments in three dimensions (3D) supports the
warfighter’s ability to make rapid, well-informed decisions by presenting complex
systems in a naturalistic, integrated display format. Unfortunately, constructing
these environments is a time-consuming task requiring specific expertise not
typically available in the command center. The future use of 3D visualization in
military operations depends on the ability of personnel with minimal graphics
experience to create virtual environments quickly and accurately by leveraging
data-driven customization of content from model archives with the data available
in the command center. Practical 3D visualization depends on standardized scene
autogeneration.

The Extensible 3D (X3D) Graphics family of specifications is approved by the
International Standards Organization (ISO) as the Web-based format for the
interchange and rendering of 3D scenes. Previous work has demonstrated that an
archive of X3D scenes, such as the Scenario Authoring and Visualization for
Advanced Graphical Environments (SAVAGE) library, can be used to
autogenerate sophisticated 3D tactical environments. Assembling and making
sense of the data necessary to autogenerate a 3D environment requires context and
good documentation, best accomplished through metadata. Metadata also supports
data-centric, component-based design; key philosophies in promoting
interoperability of networked applications. Coupled with recent developments in
X3D, enhanced features of the Savage X3D Model archives are now sufficiently
mature to support rapid generation of tactical environments.

This thesis proposes an XML metadata standard to collect and organize the
information necessary to create and populate a tactical 3D virtual environment:
the Savage Modeling and Analysis Language (SMAL). The logical extension of a
well designed standard is the ability to cross the boundaries of usage, allowing
simulators to share data with command and control (C2) suites and mission

 17

planning tools based on the construction of a virtual scene. SMAL provides the
informational “glue” necessary to perform tactical modeling, simulation, and
analysis using networked, physics-based X3D virtual environments.

3.2.2 LT Pat Sullivan, USN Thesis
Abstract from (Sullivan 2006):

The individuals charged with the task of planning, developing and implementing
force protection measures both at the unit and installation level must consider
numerous factors in formulating the best defensive posture. Currently, force
protection professionals utilize multiple sources of information regarding
capabilities of systems that are available, and combine that knowledge with the
requirements of their installation to create an overall plan. A crucial element
missing from this process is the ability to determine, prior to system procurement,
the most effective combination of systems and employment for a wide range of
possible terrorist attack scenarios.

This thesis is inspired by the work done by James Harney, LT, USN: “Analyzing
Anti-Terrorist Tactical Effectiveness of Picket Boats for Force Protection of Navy
Ships Using X3D Graphics and Agent-Based Simulation” (Harney 2003). The
thesis will expand the Anti-Terrorism Force Protection Tool developed during the
original thesis by including the capability of testing force protection measures in
multiple scenarios by utilizing models of force protection equipment and forces,
virtual worlds of existing naval facilities, and terrorist agents that exhibit intent
and behavioral characteristics which can test the effectiveness of the force
protection equipment used.

The result of this work is a scalable and repeatable methodology for generating
large-scale, agent-based simulations for AT/FP problem domains providing 3D
visualization, report generation, and statistical analysis.

3.3 SOUND & SEA TECHNOLOGIES (S&ST)

3.3.1 Overview of S&ST Contributions
The Naval Facilities Engineering Service Center (NFESC) is responsible for planning

and executing a comprehensive Anti-Terrorism/Force Protection (ATFP) Ashore program to

develop, evaluate, deploy and sustain components, subsystems and systems to reduce the

vulnerability of naval facilities and assets worldwide to attack by terrorists.

 18

As part of the planning tasks, the ATFP Ashore System Engineering analysts must

consider many existing and proposed systems, installed in a multitude of different

configurations, at in excess of 200 Naval installations, each with a specific set of requirements

applied over a wide range of threat scenarios. The tasks include analysis, trade studies and

requirements definition, with the objectives of providing recommendations for system

configurations for procurement, measures of performance (MOP), and assessment of the

effectiveness (MOE) of planned and installed systems, development of concepts of operation and

support of training for ATFP response forces.

It is simply not practical to conduct these analyses on a purely empirical basis, by

installing and trying different combinations of equipment and systems. It is necessary to obtain

site-specific data on the physical conditions, local threats and resultant vulnerabilities of each site

before applying either material or non-material solutions. However, it is equally obvious that it

is not cost-effective to develop a set of material options and methods for every site by physical

trial and error alone. A better, more cost-effective approach for Systems Engineering analysis is

required.

A widely accepted methodology for dealing with complex systems is to use a Modeling

and Simulation (M&S) approach. M&S tools can provide a tool set that allows the user - from

the analyst to the civilian administrator to the military operator – to assemble simplified

representations of an actual system that allows an understanding of underlying relationships

among sensors, combatants and their behaviors, all against the backdrop of 3D, immersive

displays of actual locations such as a harbor and surrounding areas.

Sound and Sea Technology personnel conducted a survey (Garrood 2006) of available

M&S software within the DoD community and prepared a companion white paper (Garrood, et

al 2006) on the results. These papers are available as appendices to this report.

The requirements for the CY2006 software development from the white paper are

presented elsewhere in this report; however the conclusions and recommendations are repeated

here and served as guidance for the development work summarized in this report.

 19

Quoting from the summary section of the (Garrood 2006) white paper:

There are a number of M&S software systems that have been developed for similar,
but limited, physical security programs. A review of extant anti-terrorism M&S
software has shown that the technical approach in the ongoing program of M&S
development at the Naval Postgraduate School (NPS) is the only M&S effort that is
on a clear path to meet the ATFP Ashore program requirements. Beginning with
the waterside, NPS has demonstrated substantial progress toward extending their
work to the required capabilities over the entire ATFP Ashore spectrum of
terrestrial, air and waterside threats, systems and components.

The Naval Postgraduate School M&S tool has a robust, open-source architecture
embodied in software and resources tailored to the ATFP Ashore requirements. It
has been extended to become the evaluation and assessment tool required by the
ATFP Ashore Systems Engineering team to perform most of the analytic studies
necessary for defining ATFP Ashore system risk, vulnerability and consequence
assessments for Naval installations.

In short, the NPS M&S effort is both necessary and sufficient to meet the ATFP
Ashore program requirements.

Therefore, the current project in place with NPS should be extended and
accelerated to meet all the requirements of the tool set and ensure that
documentation and user training keep pace with tool development.

3.3.2 S&ST Team
Dallas Meggit

Dennis Garrood

Mario Pozzo

Roger Christiansen

http://www.soundandsea.com

 20

3.4 ANIVIZA

3.4.1 Overview
Aniviza, Inc. provided technical support, implementation, and improvement of Viskit and

related projects, including cluster operations, designs of experiments, physically based sensor

implementations with test scenarios, scenario entities, geometric utilities, user interfaces and

package installers.

3.4.2 Activities Performed
Improvements to Gridkit, the cluster component to Viskit's experimental design feature

included transitioning from an interpreted to a compiled runtime to support more complex

parameterization of SMAL entities. This required some redesign of the Gridkit boot loader,

which sets up the runtime environment for each node run in order to import compiled classes

from Viskit XML entities and assemblies as opposed to translating these on-the-fly with the

interpreter. The benefits of using the Java™ Beanshell interpreter were mainly that it simplified

re-designation of the class pool for each replication without having to reload a new Java™

Classloader each time; this saved implementation complexity as well as runtime startup

overhead. However, the interpreter has limitations as to how many parameters a class can

consume at about 1/10th that of compiled code, so the Beanshell interpreter was replaced with a

standard Javac compiler so more complex entities can now be loaded on the grid.

Other considerations for analysis of scenarios were addressed, including whether the

current design of experiments (DOE) graphical user interface (GUI) was sufficient to set up

parameters for a nearly orthogonal Latin hyper-sample (Chioppa 2002). The current mode takes

parameters into linearized differentials where the user sets high and low endpoints, but does not

consider the use of other shaped random variates as parameters; part of the difficulty with

varying input parameters is that an event-graph agent designer may not see a particular variate as

needing to be non-constant, however it may be selected in the Viskit DoE panel to be an

independent variate, on the other hand, some parameters may have been already been designated

as non-constant variates for the entity by use of an explicit randomizer for the parameter by the

designer. If the designer of the entity was correct, then all one should want to do is set some

ranges in the Viskit Assembly Editor, run either locally or on the grid, and get the same if not

 21

faster results. A specialized random number can now be used to create nearly orthogonal Latin

hyper-samples from ordinary Viskit assemblies for cluster runs without interaction with the

Viskit DoE.

Further work needs to be performed on the DOE panel to selectively display potential

parameters (based on entity listener patterns) and also to verify and validate proper

implementation of the Latin hyper-sample algorithm.

Part of the Diskit package includes support for mover and sensor kinematics. Sensors

were designed to be pluggable into any scenario; however, all sensors so far have been simple

enter/exit ranges. This is insufficient for analysis that requires more accurate assumptions about,

for instance, detectability by sonar in a shallow harbor, where such ranges may vary, or be

intermittent. At the core of a sonar model is some Figure of Merit (FOM) for how much signal is

returned in a meaningful way to a particular operator, which then describes the range of the

sensor at that exact moment. If the FOM is positive, then a detection has happened; likewise if it

goes negative after being previously detected, then it is undetected (i.e. contact is lost). To

maximize the number of possible sensor configurations for sampling the sonar, e.g. side-

scanning vs. omni-directional, or skyward for radar, a geometrically based scan approximation is

utilized. This algorithm estimates the attenuated transmission loss of a sonar ping, also optimizes

scheduling for detection tests, pings, depending upon its most maximum range and desired scan

shape, while still being a drop-in replacement for any simpler existing Diskit sensor.

One component to the FOM calculation is noise sampled at a location. In the

MultiLRATLSonar for example, noise is parameterized by a random variate. In the sample test

case, a normal random variate is used, however, it is possible to take geo-referenced sample data

of noise using an InterpolatedXYVariate, which calculates a noise level based upon an

interpolation of closest sample data. The design of the InterpolatedXYVariate intended for fast

updates to the dataset, so that noise from moving objects could be simulated inexpensively. See

Appendix E.

Another component to the FOM calculation is target strength (TS). Target strength

depends on the relative rotation of the target and its size, which can now be accessed via SMAL.

The current implementation, however, is assuming constant TS as more work was needed to

easily obtain the rotation of a Mover.

 22

Adding vehicle kinematics and propagation-based sensor predictions to a DES system is

highly unusual (and perhaps unique). These capabilities greatly improve the fidelity of the most

critical interactions being modeled.

Getting Viskit updates out to a user base has so far been via a Concurrent Versioning

System (CVS). This is insufficient for deployment to end users. A new auto-installer builder has

been incorporated into the regular Viskit distribution tasks. Previous installers have either relied

upon using commercial freeware that have become obsolete, or upon being bundled with other

installers. Viskit now has an open-source auto-installer builder as part of the build process.

3.4.3 Aniviza Team
Rick Goldberg, CEO

http://www.aniviza.com

3.5 DALY REALISM

3.5.1 Overview
Daly Realism is an Internet Consulting company that provides business solutions to its

clients. Its focus is on secure web sites that deliver the right user experience. The company uses

the latest web technologies, including interactive 3D graphics to complete it solutions. The

principal is a professional member of the Web3D Consortium.

3.5.2 Previous Work
Daly Realism has worked with NPS on a code and documentation review of the

SAVAGE library. All of the X3D code was reviewed to determine compliance with the X3D

specification. Code that was not compliant was identified and the changes needed to make it

compliant were documented. The documentation structure and navigation was reviewed and

improvements were recommended and implemented.

 23

3.5.3 Scope of Work
Daly Realism’s Statement of Work (SoW) identified one major task, one minor task, and

a number of small project-administrative tasks. The major task was to develop application

documentation for the user-facing applications (SAVAGE Studio and Viskit). The minor task

was to develop training and instructional materials. The project-administrative tasks include

monthly progress reports, regular meeting participation, and maintain a list of future

improvements.

During the project kickoff meeting, it was determined by Sound & Sea Technology, NPS,

and NFCSE that providing the materials listed below satisfied the SoW for the major and minor

tasks

a. Viskit help, including a tutorial covering the various uses of Viskit

b. SAVAGE Studio, including a tutorial covering the various uses of SAVAGE

Studio

c. Frequently Asked Questions (FAQ) and answers for high-level questions on the

project and application

3.5.4 Activities Performed
All of the application help was developed in HTML & CSS to work with the embedded

JavaHelp™ system. Viskit help comprises 90 cross-referenced help pages in standard help

hierarchal format with screen captures to illustrate the processes. Included in the 90 pages are 16

pages of tutorials showing the step-by-step use of Viskit. The help for SAVAGE Studio

comprises 39 cross-referenced help pages in standard help hierarchal format with screen captures

to illustrate the processes. Included in the 39 pages are 5 pages of tutorials showing the step-by-

step use of SavageStudio. The help for Viskit and SavageStudio is included in all distributions of

the applications.

 24

3.5.5 Deliverables Completed
The following items were delivered on this project.

a. Viskit Help – 90 HTML pages plus 55 images

b. SAVAGE Studio Help – 39 HTML pages plus 20 images

c. FAQ – 1 HTML page

d. Monthly status reports – 7 reports

e. Weekly meeting attendance – for duration of project

f. Occasional program review meetings at NPS – 2 trips to Monterey

g. NPS Open House and ATFP tutorial – 1 trip to Monterey

h. Contributions to the Final Report

3.5.6 Recommendations for Future Work
The applications for this project are built and distributed using the Open Source model.

That model has been shown to be highly responsive to user questions and bug reports if the user

and developer communities are large enough. If clients are willing to pay for support than the

size of those communities is not an issue (for those clients). To help build the community the

following suggestions are offered:

ATFP web site: SourceForge is an excellent location for developers and downloads of

installation packages; however, it does not provide for the necessary capabilities to support a

web-based user community. The ATFP site needs to offer a threaded discussion or email list that

is open to all users. The site can also host the FAQ, on-line help, tutorial, and other use

information.

Context-Sensitive Help: Providing help to the user that is sensitive to the user’s current

situation is very useful for improved usability. Ideally the help that is provided is akin to an

electronic expert in that the help sub-system is completely aware of the steps the user has already

completed and what the user needs to do next.

Facility Building Tool: Daly Realism does not believe that a user-oriented tool that

builds a port facility should be a recommendation for future work. On occasions a tool of this

 25

type was discussed, but dismissed as beyond the scope of this project. ATFP is used by

professional doing critical risk-assessment of vital facilities. Allowing non-experts to build the

port runs the risk of severely incorrect decisions being made based on incorrect simulations.

Developing a tool that would allow a sufficiently trained individual to modify features of an

existing port is useful. This can allow quick response to changes in the local port environment,

such as dredging, new or changed piers or berths, or changes to breakwaters.

3.5.7 Daly Realism Team
All work on this project was performed by Leonard Daly, President.

http://www.realism.com

3.6 MEDIA MACHINES

3.6.1 Overview
Media Machines is a leading provider of technology and solutions for real-time 3D

communication. The company is spearheading the development of standards and technologies

that lower the barrier of entry and total cost of ownership for developing real-time, rich media

applications. The company believes that 3D graphics, integrated with rich media sources such as

hypertext, audio and video, represents the next step in human-computer interaction. The

company is an organizational member of the Web3D Consortium.

3.6.2 Scope of Work
Visualization capabilities of the ATFP Harbor Security Visualization and Analysis Tool

are being provided using the Extensible 3D Graphics (X3D) international standard for 3D

graphics on the Web. Enhancement of X3D authoring tools is an essential part of the

development work in order to facilitate development of the visualizations.

3.6.3 Activities Performed
X3D Tool Updates: Updated the Flux Studio (formerly Vizx3D) Authoring Tool to add

support for Amendment 1 to the X3D Specification, specifically [aligning with overall Project

SOW para 4.1.7]:

 26

Script and Proto Editing. The tool had the capability to Import, Export, and Edit Scripts

and Protos in the Vizx3D Beta. The remaining tasks were:

• To support editing of the Proto Body using the native Vizx3D nodes and Render the

Proto Body within Vizx3D. The Proto Body consisted of Generic Nodes which

provided the user the ability to edit any of the Fields of the Nodes, but there was no

Node Specific GUI that Vizx3D provided for the Native Vizx3D Nodes. Also, these

Generic Nodes were not rendered inside of Vizx3D. The company also provided a

GUI that allows users to specify the IS/Connect constructs within the Proto Body.

• Provided export for Protos and Scripts in the Classic VRML encoding.

Provided support of IMPORT and EXPORT statements.

• For export, provided a GUI that supports specification of which Nodes in the scene

will be exported via the Export Statement.

• For import, for each Inline Node, provided support for looking into the Inlined

Content (if present) to generate an Import Statement that corresponds to the Export

statement found in the Inlined Content.

Provided support for Import, Export, Render Elevation Grid, and Triangle Set Nodes.

Fixed Import and Export of Extrusion Node (including Rendering within Flux).

Provided support for Import, Export, Render of new CAD component Nodes and

provided edit capability for Quad Geometry Nodes.

Provided support for Cubic Environment Maps to include generation of Maps within

Vizx3D, similar to the current support for generating Spherical Environment Maps. Included

Rendering within Flux and support for rendering within Vizx3D.

3.6.4 Media Machines AT/FP Team
Tony Parisi, President and CEO

Keith Victor, Vice President of Engineering

http://www.mediamachines.com

 27

3.7 OKINO COMPUTER GRAPHICS

3.7.1 Overview
In one sentence, Okino has allocated all of its primary programming resources to the

X3D project from March through to September 2006, well beyond what we could ideally

allocate to one single project. In real figures, we had to steal development time from 2 other key

projects (XAML and v5 release cycle) in order to achieve our lofty goals for the X3D project.

Relatively speaking, the 100 hours of invoiced work time covers one weekend of work, and just

touches on some of the overall time allocated to this March-September sub-project.

We are highly motivated and (in essence) fanatical about getting our bidirectional X3D +

Classic VRML pipeline 100% perfected. Starting in 1999 VRML2 turned out to be one of our

most important conversion pipelines for our PolyTrans product, and hence we likewise see the

need and reason to allocate all of our programming resources to X3D + Classic VRML during

2005 and 2006. We decided, from a business standpoint, to allocate 2005 and 2006 to the

development, completion and refinement of this X3D project. We are now at that completion

point as of September 26th 2006.

3.7.2 Primary Task Groups
In basic terms, our time allocation has been spent on these distinct portions of the X3D

project:

1) Addition of new capabilities (import + export):

• 3D point sets (including new internal PolyTrans + NuGraf UI display, options

and save/load)

• 3D polylines (including new internal PolyTrans + NuGraf UI display, options

and save/load)

• Classic VRML support

• ZLIB compressed output capabilities for VRML1, VRML2 and X3D and

Inventor2

 28

• Removal and refinement of all known problems, on 32-bit and 64-bit

platforms.

• Migration to using the faster Microsoft MSXML v6

2) Coordination of the release of OpenVRML v0.16 from Braden McDaniel. Okino

developed the X3D + Classic VRML code for OpenVRML v0.15 during 2005 (our primary task

during 2005). Braden then took all of our code and integrated it "his way" into v0.15 from

January through to March 2006. He also fixed all known bugs in the toolkit. From March to

September 2006 we then had to re-integrate his new v0.16 initial release BACK into our code

line, and then make all changes necessary to make the new codeline compatible to what we

consider "proper X3D support", as it had existed in the Okino version of OpenVRML back in

December 2005. The sheer, ultra complexity of the OpenVRML toolkit, and its 1 hour compile +

link times, made this the most horrendous project ever taken on at Okino, bar none. As of

September 26th we finally believe the v0.16 toolkit is commercially viable for our customers to

use. Okino does not release any software until we can personally guarantee a software solution -

at this point in the evolution of our own X3D converters + OpenVRML combo; we believe the

end to end solution is finally working nicely.

3) Porting of OpenVRML to the Visual Studio VC2005 compiler. OpenVRML is a very

heavy templatized toolkit and hence refused to compile, far less run, on VC8. This was a real

thorn in our side all during this project. We would rather have kept with VC7.1 but in order to

even think of porting to 64-bit we needed to first get the codeline running on VC8 Win32. The

VC7.1 version of v0.16 was working by May 17 2006, and the VC8 version by September 23rd

2006.

4) Porting of Okino X3D + Classic VRML + VRML2 code to 64-bit architecture. This

was tied in directly to the initial port of all the code (import and export) to VC8. The exporters

were functional by Siggraph 2006. However, the first successful execution of the 64-bit importer

code (with no known crashes) only occurred on September 23rd.

5) Re-engineering of our various installers to support the new VC8 + 32/64-bit versions

of the VRML2+X3D importer. This turned out to be a real fiasco. A simple task turning into a

complete task. Our new code requires MSXML v6 for 64-bit. The MSXML installer requires

 29

Windows Installer v3.1. Windows Installers v3.1 requires that Installshield install it before it

executes our main Okino installer. However, a "chicken before the egg" problem occurs with

these dependencies. In the end we finally opted to use MSXMLv4 on 32-bits and MSXML v6 on

64-bits, both of which have been proven to be functional. This may allow us to use the stock

Microsoft installers without requiring the end users to upgrade their entire operating system first.

This is just one classic problem which has caused the X3D project to consume almost every hour

of our development time this summer.

3.7.3 Main Development Achievements

• 3D point sets (including new internal PolyTrans + NuGraf UI display, options

and save/load)

• 3D polylines (including new internal PolyTrans + NuGraf UI display, options

and save/load)

• Classic VRML support

• ZLIB compressed output capabilities for VRML1, VRML2 and X3D and

Inventor2

• Migration over to an "Okino qualified" OpenVRML v0.16 toolkit, which

officially includes all of the Okino X3D and Classic VRML extensions + bug

fixes.

• Final release version of our X3D+VRML2+Classic-VRML import and export

converters using the first stable release of OpenVRML v0.16

• Porting of code to VC8 32-bit and 64-bit.

• Modified installers to support this new version of Okino X3D+VRML

support.

• Migration to using the faster Microsoft MSXML v6

 30

3.7.4 Okino AT/FP Team
Robert Lansdale, CEO

Andrew Grieve

http://www.okino.com

3.8 PLANET 9 STUDIOS

3.8.1 Overview
Planet 9 Studios is a 3D products and content company focused on providing real

business solutions for the Internet. The company has produced over 250 virtual worlds for a

variety of applications such as marketing, advertising, product visualization, training,

architectural simulation, military simulation and entertainment. It is constantly incubating new

software products for companies and helping them to reach market. The company is an

Organization Member of the Web3D Consortium.

3.8.2 Previous Work
Planet 9 Studios has worked with the US Navy for several years, developing high-fidelity

models and software systems for a variety of needs. This includes development of world-class

models as part of the Anti-Terrorism/Force Protection (AT/FP) team.

In October 2004, the company was tasked with the development of a fully textured

Extensible 3D (X3D) model of the Al-Basrah Oil Terminal (ABOT) and the surrounding area for

the purpose of evaluating scenarios in the protection from surface threats. This project was

originally known as Gas and Oil Platforms (GOPLATS).

In April 2005, the company was contracted to develop two additional X3D models for the

AT/FP effort, during Phase I of this project. These were high-fidelity models of two Navy

facilities in Washington State, specifically NAVSTA Bremerton and NAVMAG Indian Island.

These models included geo-referenced terrain as well as a number of photo-realistic shore-side

3D buildings and structures. Several models of watercraft were also developed as part of this

deliverable. These combined models were used as the primary test-bed scenarios in the

continuing development of the AT/FP software.

 31

3.8.3 Scope of Work
In February 2006, Planet 9 Studios received a scope of work (SOW) for Phase II of the

Modeling and 3D Visualization for Evaluation of Anti-Terrorism/Force Protection Alternatives.

The scope was an order of magnitude greater than Phase I, which included revisions of Phase I

deliverables, as well as the development of new X3D models of waterside buildings and terrain

at both Pearl Harbor and Port Hueneme. Additionally, the SOW included supporting roles in the

tasks of analysis tool development, training and documentation, as well as the necessary team

coordination and management.

However, the full level of funding required to meet every task described in the SOW was

not available. Planet 9 Studios was awarded a Purchase Order for approximately 48% of the total

amount quoted as being required to complete all of these tasks. The company worked with the

customer and the team to prioritize the tasks, and made a determination that the following items

would be undertaken with the available funds:

• Pearl Harbor – construction of X3D model for Waterside Security Visualization

• On-site Training – provide one on-site training in the use of AT/FP software

• Team Coordination – project management, reporting, and conference attendance

Those items removed from the list of expected deliverables were the following:

• Indian Island and Bremerton – enhancement of Phase I modeling

• Port Hueneme – construction of X3D model for Waterside Security Visualization

• Analysis Tool – contribution to design, development, testing, and demonstration

• Off-site Training – provide off-site training in the use of AT/FP software

As the project proceeded, some additional task items were requested by the customer.

Where possible these requests were accommodated by making non-critical adjustments to the

requirements of the existing tasks. These are called out below.

 32

3.8.4 Activities Performed
Pearl Harbor Waterside Security Visualization (Bug #989) – Planet 9 Studios was

given notice to proceed on March 7, 2006. Prior to this, the company had received the

prerequisite technical drawings and other source data from Naval Facilities Engineering

Command (NAVFAC). A company photographer was dispatched to Pearl Harbor to take

pictures of the buildings and structures located in the area of interest. These photos would serve

as both a visual reference and as the source for texture maps to be applied to the 3D building

models, in order to give them a photo-realistic appearance. (Data collection was identified as

Bug #978)

A geo-referenced X3D terrain model of Oahu was developed using 10-meter SDTS

Digital Elevation Model (DEM) source files. This was draped with color-corrected 30-meter

Land Remote-Sensing Satellite (LANDSAT) imagery. To the immediate area around Pearl

Harbor, topographic data was integrated into the greater terrain model. This higher-resolution

area was draped with 1-meter imagery originating from Space Imaging, and included the Naval

Station, Naval Shipyard, SUBASE, FISC, and Ford Island facilities. The resulting geometry was

then optimized for real-time rendering, including the addition of Levels of Detail (LOD) for

increased efficiency, and geo-referenced within the Universal Transverse Mercator (UTM)

coordinate system. The rendering system, Xj3D, required these to be converted to a terrain

specialized form of the X3D node, called “GeoLOD”.

Upon the terrain were constructed X3D models of the majority of Navy buildings visible

from the water, as well as piers and wharves attached to the facilities. The location and footprint

of each structure was extracted from the provided computer-aided drafting (CAD) files, which

had been aligned with the geo-referenced terrain. The footprints were extruded and modified to

create a representational geometric model of each structure. To these were applied texture maps

derived from the location photographs, thereby resulting in a photo-realistic model for use in the

AT/FP simulation software. For ease of management, the buildings were grouped into a limited

number of separate files based upon location. It was determined that providing each individual

structure in a separate file, as originally requested, would have been too burdensome given the

amount of work that would have been required. This allowed for the assigned funds to be

redirected to other additional tasks.

 33

Similar to the topographic terrain, bathymetric geometry was developed using vector-

based CAD files as the source data. These describe the depth of the harbor floor with contours at

regular intervals. From these, a 3D mesh was created and optimized. However, this model was

not integrated into the final scene. Higher resolution bathymetric data in Digital Nautical Chart

(DNC) format, supplied by the Naval Undersea Warfare Center (NUWC), was able to be loaded

directly into Xj3D by the team at Naval Postgraduate School (NPS).

A series of Aids to Navigation (ATON) X3D PROTO models was produced to allow the

virtual waterways to be populated with charted marks as they are in the actual world. The

selection included various buoys, lights, daybeacons, and range lights that can now be positioned

and oriented at precise locations within a given scene. When applicable, certain models contain

switches to allow assignment of a few specific attributes such as port (green) vs. starboard (red),

light on vs. light off, and brightness of light glow. An X3D scene was laid out using these ATON

models to reflect the actual lay out of marks at Pearl Harbor, according to GIS data describing

the exact location and identity of these. This data was obtained from the public website of the

National Oceanic & Atmospheric Administration (NOAA).

As an addendum to the SOW (via Bug #1009), Planet 9 Studios was asked create a 2D

compass rose for general direction finding, to be displayed in a Heads-Up Display (HUD)

manner over any given X3D scene. This consisted of a texture mapped compass face which

rotated in direct correlation with the orientation of the user’s viewpoint. While the visual

components were complete with basic functionality in place, the file was not finished as of this

report. There remains an issue of gimbal lock in the compass rotation, due to the fact that it is

tied to the viewpont orientation via the X3D “ProximitySensor” node. The visual artifact is not

noticeable when the viewpoint is parallel to the ground, but becomes apparent when viewpoint is

pitched up or down. A quaternion approach may need to be implemented in order to alleviate this

issue.

The request was also made (via Bug #537) of Planet 9 Studios to provide a copy of its

previously existing X3D PROTO of the Port Security Barrier (PSB) for release into open source,

thereby allowing it to be freely used and modified. A portion of the funding was redirected from

other tasks to provide compensation for this transfer of intellectual property. The PSB model was

reviewed and released, after minor refinements.

 34

Finally, Planet 9 Studios coordinated with project partners to achieve necessary results.

The company worked closely with Yumetech not only to integrate the X3D models into its Xj3D

real-time rendering environment, but also to sort out various technical issues, including geo-

location, naming conventions, headers, LODs, metadata, lighting, and bug identification. To a

lesser extent Planet 9 Studios also worked with Daly Realism, providing some minor assistance

with the Help System they developed for the software.

Training and Documentation (Bug #986) – Planet 9 Studios was originally asked to

provide a hands-on tutorial targeted towards prospective force protection officers and users of

the AT/FP software, with an emphasis on more advanced, analyst type levels of technical

experience. Based on expected changes in the prospective audience, the focus of the tutorial was

changed to include a more general overview of the code and data structures that the system runs

on. The objective was to give prospective users a good idea of the underlying system and allow

more advanced users a glimpse into the ease with which the system can be extended.

The process involved collaborating with LT Pat Sullivan of the Naval Postgraduate

School (NPS) on basic VisKit examples, as well as obtaining a simple DES example used to

illustrate the basic principles underlying the simulation system. The two example scenes

illustrate the most simple event graphs and assemblies possible to run the system with. Most of

the material in the AT/FP software tutorial slides was generated from these examples.

The first milestone was the initial draft of the tutorial, delivered on September 12, 2006.

The second milestone was the delivery of the second version of the tutorial, delivered on August

1, 2006. The primary deliverable was the tutorial itself, which was made available via the Planet

9 Studio website as well as presented in person at the August 7, 2006 AT/FP software tutorial

session at the MOVES Open House, fulfilling our supporting role in developing the project

documentation. The tutorial was developed using the open-standards based s5 presentation

system.

Future directions for work should primarily include feedback from a broader array of

potential users. Future versions of the tutorial will be more hands on and comprehensive.

Delivery of this sort of tutorial can play a critical role in detecting and repairing usability issues.

Team Coordination and Management – Planet 9 Studios began the project by

contributing to the Plan of Action and Milestones (POA&M). The regular administration of this

 35

project included weekly teleconferences with the team, with occasional project review meetings

onsite at the Naval Postgraduate School (NPS) in Monterey, CA. Technical issues were reported,

assigned, and tracked using Bugzilla software. Detailed status reports were submitted after the

end of each month, as well as contributions to this final report. Additionally, Planet 9 Studios

was asked to participate in a selection of professional conferences during the period of

performance.

Representatives of the company attended the Anti-Terrorism/Force Protection (AT/FP)

Ashore Modeling and Simulation (M&S) Workshop at NPS on May 9-11, 2006, an

informational forum of M&S professionals working in the service of naval installation security.

David Colleen, CEO, Planet 9 Studios, gave a presentation entitled, “3D Geospatial Data

Interfaces & Tools” which discussed the various methodologies used by the company to provide

solutions to its customers within the M&S market.

For the MOVES Open House, held at NPS on August 8-10, 2006, Planet 9 Studios was

again in attendance. A tutorial for the AT/FP software was held on the previous day during

which Dan Ancona, Planet 9 Studios, presented the instructional “Port Security Simulation with

SAVAGE Studio”, demonstrating fundamentals of the software with examples and code.

Christian Greuel, Planet 9 Studios, presented a high-level overview of the production process for

creating geo-referenced models, entitled “Building Geo-Registered X3D - Port & Harbor

Models… Accurately Located”. The company also participated in the Demo Night by

showcasing several examples of work that have been completed for the various phases of the

AT/FP project.

3.8.5 Deliverables Completed
In the course of its performance of the contract for Phase II of the Modeling and 3D

Visualization for Evaluation of Anti-Terrorism/Force Protection Alternatives, Planet 9 Studios

completed and delivered the following items:

• Input to the Plan of Action and Milestones (POA&M)

• Geo-referenced Buildings and Terrain, X3D models with texture maps:

o Pearl Harbor / Oahu terrain, including GeoLODs, and piers & wharves

 36

o NAVSTA/SUBASE/FISC buildings

o Naval Shipyard buildings

o Ford Island buildings

o Extra buildings (Lochs)

o Ford Island Bridge

• Aids to Navigation, X3D PROTO models with texture maps:

o Daybeacon

o Lighted Buoy

o Light Post

o Light

o Range Light

o Danger Daybeacon (non-PROTO)

• Aids to Navigation, Sample Layouts, X3D models:

o Pearl Harbor Navigation Aids (Geo-referenced)

o Navigation Aids Example (Generic example)

• Buoys, X3D models with texture maps:

o Marker Buoy

o Mooring Buoy

• Port Security Barrier, X3D PROTO model, released as open source

• Compass Rose, X3D PROTO and example, VRML format (incomplete code)

• AT/FP software installation script

• Slide-sets from AT/FP Ashore M&S Workshop presentations

• Slide-sets from AT/FP software tutorial presentation

• Findings from Savage / SavageDefense archives file verification

 37

• Monthly Status Reports

• Contributions to Final Report

3.8.6 Recommendations for Future Work
Much progress has been made in the first two phases of the Modeling and 3D

Visualization for Evaluation of Anti-Terrorism/Force Protection Alternatives effort. To build

upon this success, the following enhancements are suggested.

Items removed from Phase II – The project would benefit from attending to those tasks

which were not able to be addressed within the allotted funding for Phase II. These include:

• Indian Island and Bremerton – enhancement of Phase I modeling

o increased fidelity of terrain imagery

o addition of more site-specific buildings

o inclusion of foliage

o other

• Port Hueneme – construction of X3D model for Waterside Security Visualization

• Analysis Tool – contribution to design, development, testing, and demonstration

• Off-site Training – provide off-site training in the use of AT/FP software

Conversion of existing ports – Planet 9 Studios has previously developed a variety of

US Navy specific 3D content, to which the company has maintained ownership of the

intellectual property rights. Approximately half of this data exists in X3D format, while the other

half is in the older VRML97 format. So that these models might achieve the widest possible use,

it is suggested that they are 1) geo-referenced, 2) converted to X3D format, if applicable, and 3)

moved into the realm of open source, to be served from the Savage and SavageDefense (FOUO)

X3D Archives. The models to which this currently applies are of the following locations:

• Al-Basrah Oil Terminal (ABOT)

• Friday Harbor, WA (civilian)

• MCAS Miramar

 38

• NAS North Island (rough)

• NAVMAG Indian Island (earlier work)

• NAVSTA Norfolk (coming soon)

• Pearl Harbor

o Terrain

o Ford Island Buildings

o Ford Island Bridge

o Arizona Memorial

• Port Hueneme (rough)

• SUBASE Bangor

o Marginal Wharf

o Delta/Drydock

o Service Pier

o Explosives Handling Wharf

• Washington Navy Yard

• Yokosuka, Japan

Creation of new ports – In addition to these pre-existing assets, Planet 9 Studios would

be able to provide any number of new X3D port facilities. This could include any or all real-

world facilities, either CONUS or OCONUS, that would benefit from utilizing the AT/FP

visualization system. It could also include generic, non-specific ports that might be used for

examples and software training scenarios.

Aids to Navigation (ATON) – Create a comprehensive system of X3D PROTO models

with attributes adherent to International Hydrographic Organization (IHO) S-57

(http://www.caris.com/s-57). This standard, prepared by the IHO Committee on Hydrographic

Requirements for Information Systems (CHRIS), is for the coding and exchange of hydrographic

digital data. The X3D PROTOS would include defined options such as numeric designation,

 39

types of sounds, and precise light flashing characteristics. The system would include a more

complete selection of ATON types (e.g. Cans/Nuns, Mileboards, Warning Markers, etc). See

Appendix G.

Automation – The following production items would benefit from development of

automation processes:

• Automatic editing of X3D files to include multiple alternate URLs for textures maps

• Automate editing of X3D files to include multiple alternate URLs for ExternProto

files under the “ExterProtoDeclare” node

• Automate separation of individual geometries in the scene (e.g., platforms, buildings,

piers, etc.) into separate files that can be inlined and geo-positioned into other scenes

and not tied specifically to the subject scene.

Miscellaneous – In addition to the above, the following tasks are also suggested as future

work for this continuing effort:

• Addition of visual effects, explosions, gun fire, time of day, weather.

• Fix all older X3D headers, e.g. ABOT, Bremerton, Indian Island, boats

• Move Compass Rose to HUD layer

• Write a “How to Build an X3D City Model” white paper.

3.8.7 Planet 9 Studios AT/FP Team

David Colleen, Chief Executive Officer

Christian Greuel, Director of Art & Production

Dan Ancona, Software Engineer

Danny Lee, 3D Artist

Carlos Newcomb, 3D Artist

Ken Rhee, 3D Artist

Alberto Rodriguez, Office Manager

http://www.planet9.com

 40

3.8 SONALYSTS
Noteworthy contributions to the sonar model design were provided by Sonalysts, Inc. All

design work was coordinated by NPS. See Appendix E for a rigorous design summary of sonar

physics modeling.

3.8.1 Overview
For more than 25 years, Sonalysts has developed solutions in computer software design

and implementation, telecommunications research and analysis, prototype development and

manufacturing, multimedia design and editing, animation, intelligent training systems, weather

products, commercial nuclear power safety and quality assurance, and naval systems analysis

and operations research.

3.8.2 Progress to date:
Sonalysts researched unclassified sources for parameters and techniques appropriate for

acoustically modeling shallow, noisy waters at high frequencies. Sonalysts provided Aniviza

with a description of the sonar equation and value estimates for various parameters. Cylindrical

spreading plus frequency dependent attenuation was selected to provide initial estimates of

acoustic transmission loss. While quick to calculate and reasonably accurate, a more

sophisticated alternative to represent transmission loss has also been considered. The

Comprehensive Acoustic Simulation System (CASS) was studied as a more sophisticated

alternative to the aforementioned cylindrical spreading plus frequency dependent attenuation. A

CASS input stream was developed to estimate transmission loss in the vicinity of Port

Townsend/Indian Island.

3.8.3 Recommendations for future work
Refinement of the spreading + attenuation model should be possible using CASS results

as a guide. Furthermore, the CASS results themselves can be improved by using measured

sound speed profiles, bathymetry, and bottom type for the various harbors of interest.

Unclassified descriptions of appropriate sonar systems should also be sought.

 41

3.8.4 Sonalysts Team
Margaret Bailey

Doug Nelson

http://www.sonalysts.com

3.9 YUMETECH

3.9.1 Progress to Date
At the end of this phase of project, Yumetech made significant progress on a number of

key areas. As well as the development directly related to the ATFP simulation system, the

company made significant updates to its Xj3D and Aviatrix toolkits. These changes significantly

improved the performance of the software and made future changes to the software easier to

incorporate. Yumetech also added a number of features to the ChefX3D toolkit to expand its

functionality.

MOVES Institute members added invaluable input with regards to software bugs and

implementation problems through regular telephone conference calls. Moreover, MOVES

content provided useful material for testing the Xj3D source code. Yumetech was able to make

adjustments to the code to correct the bugs discovered in these tests.

At the beginning of this project, simulation developers had to employ several separate

and distinct software tools to generate a scenario. One of these components—a 3D modeling

tool—typically requires a fairly expert user. At the end of this Phase, Yumetech has successfully

created a fully integrated tool that allows a non-expert user to author a scenario using one of the

pre-defined ports. Moreover, one can change all SMAL parameters and some agent specific

simulation parameters and then can launch a 3D overview of a simulation and/or run the scenario

for statistics analysis.

a. Yumetech has accomplished the following during this project:

b. Upgraded the ATFP 3D visualization software to Xj3D version 2.0.

c. Upgraded the ATFP 3D visualization software to Aviatrix3D 2.0.

d. Added the prototype 3D editing viewer.

 42

e. Provided zoom and pan capabilities in main view window.

f. Developed an OrthoViewpoint for top-down photos of 3D scene.

g. Completed the integration of the Pearl Harbor Model into the software.

h. Added screenshots and conversion factors capabilities.

i. Fixed Xj3D issues discovered with new Pearl Harbor model.

j. Created an end-user install package to facilitate software installation.

k. Re-architected ChefX3D to support new features

i. Added support for segment tools (Fence, Barrier).

ii. Added support for segment property panels.

Yumetech completed the following assigned tasks during this project:

a. Port and Port Facility Modeling.

i. Indian Island and Bremerton, Washington Waterside Security Visualization.

ii. Pearl Harbor and Port Hueneme Waterside Security Visualization.

b. Analysis Tool Development.

i. Integration with AUVW.

ii. GUI for Scenario Set-up.

iii. Configuration Control.

c. Follow-on Requirements.

The Phase Two work required that certain components be completed before others.

Because of task priorities and additional requirements arising from the development process, the

following tasks were not completed in this phase:

a. DNC Load/Display.

b. Physics-Based Models (some work on this component was done, but the task is

not completed).

c. NMCI/IT-21.

 43

3.9.2 Future Development
Yumetech sees the next phase of development on this project as the one that will bring

the ATFP simulator to a fully deployable stage. As well as completing the tasks left from the

Phase Two work, the company has identified a number of areas that would further enhance the

usability and flexibility of this already invaluable tool. These areas are:

a. Location set-up.

b. Barrier representation.

c. Property editor.

d. Statistical/Visualization tool improvements.

e. 3D viewer improvements.

f. Automating the Integration of Savage Studio with the Savage Library.

g. Environmental Effects.

3.9.2.1 Location Set-up
Currently, creating new scenario locations such as port facilities and military

bases requires 3D modeling experts to create these models at a premium cost. Yumetech

proposes the development of a set of modeling tools that will allow non-3D graphics experts to

create their own scenario locations. These tools will make use of geo-spatial and satellite data as

well as a model database that will allow end-users to easily create terrain models and place

buildings, port facilities, and other assets with relative ease. This work can be integrated with the

X3D Earth effort to facilitate this task.

Yumetech also sees the following components as key elements of this task:

a. Fences—create a fence model/behavior.

b. Checkpoints—Create a check point model/behavior.

c. Building Authoring—Develop an easy interface to create simple buildings.

The Google Sketchup interface is a good example.

 44

3.9.2.2 Barrier Representation
The current barrier models need further improvement to be effective in simulation

assessment. The current barrier models need a SMAL representation. Moreover, the top-down

visual representation of the 3D model needs significant improvement. Finally, the visual

response of boat models should use real-time physics for realistic response characteristics.

3.9.2.3 Property Editor
Savage Studio needs to parse the Viskit event graph file and use that information

to populate a new tab on the property editor panel. Currently, a restricted interface is in place to

handle Patrol Zones. This interface needs to be generalized in order to make the system more

useful.

Moreover, the current system parses an XML instance to develop the parameter

space in the following manner:

<Communications channel="2" address="124.134.89.2"/>

Yumetech proposes that parsing a schema would greatly improve the utility of the

property editor. Such a scheme would allow the addition of appInfo components for adding

features such as Data Editors (e.g., File Dialog boxes). The appInfo tag identifies what special

editor the system must use in a particular instance. Making this change would also allow the

system to pull the allowed values to populate a combo box. A possible scheme example would

look like the following:

<xs:element name="Channel">

 <xs:complexType mixed="false">

 <xs:attribute name="channel" type="xsd:integer" appInfo="NumberEditor">

 <xs:attribute name="addressed" type="xsd:string"

 appInfo="InternetAddressEditor">

 </xs:complexType>

</xs:element>

 45

3.2.9.4 Statistical/Visualization Tool Improvements
The current system requires users to select entities to track in the statistics tool in

Viskit. A better way to accomplish this task would be to allow users to select entities for

analysis using Savage studio. This change would provide end-users with a more intuitive,

graphical interface for this task.

The visualization tool for the review specific scenarios should allow end-users to

select a specific run of a scenario and review it in the 3D viewer. This ability would allow users

to examine and analyze anomalies in the statistical runs to determine weaknesses in the defense

plan. This capability needs to be added to the current system.

The system would also benefit from a 2D View of the scenario. The system

should provide 2D, so that top-down view of the scenario incidents can be viewed by the user.

This ability might be accomplished using an orthographic view of the 3D scene.

3.9.2.5 3D Viewer Improvements
Yumetech has identified a number of areas to improve the usability of the 3D

viewer. These include:

a. Improving texture loading to improve performance on lower-end machines.

b. Optimizing memory usage so larger areas can be modeled.

c. Implementing a complete (MIL-STD)-2525A for Unit descriptor top-down

view.

d. Integrate X3D Binary generation and loading

Yumetech also believes that providing a tree view of the entities of a scene can

make it easier to edit some worlds. This tree-view should allow deletion of entities. Moreover,

selecting an entity should bring its parameters up for editing in the property editor.

Moreover, Yumetech believes that end-user utility can be significantly enhanced

by employing a number of viewpoint interface enhancements. Better viewpoint selection can be

created by assigning a keyboard interface for selecting high/med/low viewpoints. Usability can

also be improved by implementing the ViewpointGroup node. Other viewpoint improvements

include:

 46

a. Provide better options for selection.

b. Provide an option for grid display and snap-to object.

c. Finish implementation of undo/redo feature.

d. Provide measurement features between two locations.

3.9.2.6 Automating the Integration of Savage Studio with the Savage Library
Yumetech has identified the improved integration of Savage Studio with the

Savage X3D Archives as a key component of this phase of the project. This integration will

facilitate the rapid deployment of new models and behaviors into the authoring tool, and will

significantly improve the utility of this tool. An important task in this component is

Savage/Savage Defense Automation; that is the automation of some tasks involved in

maintaining Savage and Savage Defense libraries. These tasks include:

a. Create a SMAL size checker to insure 3D models match simulation data.

b. Multi-URL/fallback fill-in—fill-in URL fields with local and web fallbacks

for URLs.

c. Auto-generate top-down map view from the actual 3D model of the

location.

d. Auto-generate icons for Savage entities.

 47

3.9.2.7 Day/Night/Weather Effects
The current system assumes clear weather in daytime conditions. Simulations

would be greatly enhanced by implementing visual and simulation changes for difference in

sensor performance in different conditions.

3.9.3 Yumetech, Inc. Team
Alan Hudson, President and CEO

Justin Couch, Software Engineer

Stephan Matsuba, CFO

http://www.yumetech.com

http://www.xj3d.org

 48

4.0 SUMMARY AND CONCLUSIONS

4.1 M&S WORKSHOP CONCLUSIONS FROM (BRUTZMAN ET AL. 2006)
The primary intended outcome of the workshop was simply informed discussion of

current Research and Development (R&D) projects. A secondary goal is continued broad

sharing and promulgation of relevant technical information. Consensus of the attendees

indicated that both goals were well achieved. There was also strong demand to conduct follow-

on meetings to solidify the information exchange and opportunities for technical collaboration

that were evident in the meetings. Presentations and demonstrations clearly showed that many

tools had overlapping capabilities...

This event may have been the first time that a group of M&S practitioners performing

related efforts in naval installation security have been brought together. This is a good start, and

such efforts need to continue... Workshop participants saw a broad set of activities presented and

demonstrated, cutting across a variety of exercises involving human participants, automated

analysis, and real-world decision support. Common to all was importance of correlated 2D and

3D visualizations, representations of facilities and bases, modeling of sensors and environmental

conditions, computing measures of interest, and modeling other aspects of the problem. Despite

significant challenges, there are large opportunities for sharing of resources if practitioners are

able to adopt specific standards and establish community contributions for interchange and reuse.

Otherwise, massive overlap of human and monetary capital in duplicative efforts is likely to

prevent ever-limited resources from establishing the more sophisticated models that are needed

to solve complex real-world problems.

Specific conclusions gleaned from the Workshop include:

• The Workshop was exceptionally important and provided great value to the

attendees.

• Free technical interchange without specific programmatic constraints allowed better

exploration of potential technical capabilities.

• One or more sponsors with direct interest in these activities ought to participate to

ensure continued progress.

 49

• Further CNI and NAVFAC participation would be valuable.

Based on the clear group consensus which produced the workshop findings, we

recommend the following actions be taken:

• Propose a special issue on Installation Security for the Journal of Homeland Security

Affairs.

• Participants should consider attending the NPS MOVES Institute Open House

tutorial session August 7, 2006, including project presentations and demonstrations

during the Open House August 8-10.

• Establish the necessary organization to enable some form of working group to

continue to address the issues raised in this Workshop.

• Plan a follow-on meeting to be held in 4-6 months.

• Candidate sponsors are requested to review this report, talk to participants and

consider establishing a partnered activity by multiple sponsors in order to continue

workshop efforts and technical collaboration.

• Various parties who have modeled certain ports ought to compare collected assets,

evaluate what resources exist and determine how those resources might be best

merged for broader use.

4.2 PHASE II CONCLUSIONS AND RECOMMENDATIONS
The reader is referred to the previous chapter (see Chapter 3) for detailed sub-contractor

and partner conclusions extracted from their summary reports. The editors of this technical

report feel that these are sufficient for the purposes of this report.

 50

APPENDIX A. NAVAL INSTALLATION SECURITY MODELING AND
SIMULATION WORKSHOP

ATTENDEE LIST:
 LT Charles Adams USS Bonhamme Richard
 MAJ Darryl Ahner US Army TRADOC Analysis Center, Monterey
 Dan Ancona Planet 9 Studios
 Michael Ayling Commander, Navy Installations Command
 Doug Backes US Pacific Fleet
 Margaret Bailey Sonalysts, Inc.
 Manoj Bhardwaj Sandia Laboratories
 Curtis Blais NPS MOVES
 Joyce Borgen Center for Asymmetric Warfare
 Platt Brabner 21st Century Systems, Inc.
 Don Brutzman Naval Postgraduate School MOVES Institute
 Chris Carlson Metron Corporation
 David Colleen Planet 9 Studios
 Jeff Debrine OPNAV N81
 Alexandra Devisser Naval Facilities Engineering Service Center
 Ayman El-Swaify Naval Facilities Engineering Command, Naval Information
 Technology Center
 David Garvey Boeing Phantom Works
 Dennis Garrood Sound & Sea Technologies
 Rick Goldberg Aniviza
 Riley Goodin Northrop Grumman Corporation
 Chris Greuel Planet 9 Studios
 Christopher Guryan ARES Corporation
 Sean Harrigan MOVES Institute
 Alan Hudson Yumetech
 CDR John Inman US Pacific Fleet
 Ray Jakobovits Metron Corporation
 Dustin Kozal 21st Century Systems, Inc.
 Steve Kunkle ARES Corporation
 J. D. Miller Johns Hopkins University Applied Physics Laboratory
 Elizabeth Morin Booz-Allen
 Terry Norbraten NPS MOVES
 Robert Seligman SAIC
 LT Pat Sullivan NPS MOVES
 Pete Swan MaK Technologies
 Doris Turnage US Army Engineer Research and Development Center
 Jeffrey Weekley NPS MOVES
 Doug Weihnacht Kinection
 David Zeltzer Northrop Grumman Corporation

 51

NAVAL INSTALLATION SECURITY MODELING AND SIMULATION WORKSHOP
AGENDA:

Workshop Day 1: May 9, 2006 Tuesday

0800 Registration

0830 Welcome to Monterey & NPS – Don Brutzman, NPS Principal Investigator

Workshop Objectives – Don Brutzman, NPS Principal Investigator

 NPS Presentation and Demonstrations: 3D Modeling Applied to the AT/FP
Problem and Interfacing to the Simulation for Data Mining – Don Brutzman
and NPS Savage Team

1000 Break (Set up of NPS Wireless Guest Accounts)

1030 Invited Presentation: M&S Applied to AT/FP Harbor Defense Measures of
Effectiveness and Measures of Performance

 – Chris Carlson and Ray Jakobovits, Metron Corporation

1130 Lunch

1300 Invited Presentation: Application of the AVERT Model
 – Christopher Guryan and Steve Kunkle, ARES Corporation

1400 Invited Presentation: Application of Simulation to Large-Scale Exercises

– Joyce Borgen, Center for Asymmetric Warfare

1430 Break

1500 Inserted Presentation: Graduate Education for Homeland Defense and
Security – Dr. Paul Stockton, NPS Director, Center for Homeland Defense

1515 Invited Presentation: Using M&S Tools to Simulate Terrorist Attacks

– Doris Turnage, US Army Engineer Research and Development Center (ERDC), and
MAJ Darryl Ahner, TRAC-Monterey

1630 Open Source and Open Standards for Long-term Project Success: Lessons
from 3D Model Management
 - Don Brutzman, NPS Principal Investigator

1700 Workshop Day 1 Summary and Wrap-up
 – Don Brutzman, NPS Principal Investigator

1800 Social Hour and Dinner (Hula’s in Monterey)

 52

Workshop Day 2: May 10, 2006 Wednesday

0800 Session 2 Agenda and Objectives
 – Don Brutzman, NPS Principal Investigator

0815 Invited Presentation: Physics Based Modeling and AT/FP Ashore M&S –

Margaret Bailey, Sonalysts

0900 Invited Presentation: 3D Geospatial Data Interfaces and Tools
 –David Colleen, Planet 9 Studios

1000 Break

1030 Invited Presentation: Shipboard Area Protection Systems

– Platt Brabner, 21st Century Systems, Inc.

1100 Invited Presentation: “GIS Central” NAVFAC’s Approach to Centrally Hosting
and Delivering the Navy’s GeoReadiness Repository – Ayman El-Swaify, Naval
Facilities Command, Naval Information Technology Center (NAVFAC NITC) (via
conference call)

1200 Lunch

1330 Invited Presentation: Open Source Discrete Event "Extend" and
 Open Source, System Dynamics "Vensim" Efforts
 - David Garvey, Boeing

1400 Survey of Additional Naval Installation Security Related Modeling and

Simulation Efforts
 - Dennis Garrood, Sound and Sea Technologies (S&ST)

1500 Break

1530 Invited Presentation: Tactical Decision-Making Training for Force Protection

– Pete Swan, MaK Technologies

1630 Workshop Critique and Go-Forward Discussion – Don Brutzman, NPS Principal
Investigator (Moderator)

1730 Workshop Day 2 and Public Attendee Session Concludes: Social Hour, NPS
Trident Room (Basement of Herrmann Hall)

Workshop Day 3: May 11, 2006 Thursday (organizers only)

0700 Assemble report of Workshop presentations, findings and recommendations

1700 Workshop Complete

 53

THIS PAGE INTENTIONALLY LEFT BLANK

 54

APPENDIX B. INSTALLATION/OPERATION TUTORIAL AT NPS
MOVES OPEN HOUSE, AUGUST 7, 2006

August 7-8, 2006 Tutorial Announcement:
NPS Waterside Security (WSS)
Anti-Terrorism / Force Protection (AT/FP)
Analysis Tool

Introduction: How can we plan for the defense of our nation’s harbors and waterways in a way that shows us
surprise scenarios that we never imagined? How do we graphically visualize the tactical execution of our force-
protection plans? How do we compute statistical data to support findings of best-effort plans for our naval forces
afloat? How do we use Java to model opponents, render entire harbors using interactive 3D graphics, and even run
grid clusters to provide high-confidence analytic results? This tutorial shows how.

Eligibility: The tool and the instruction are open to all, but there will be a US Government only (For Official Use
Only) session during the tutorial that will be closed to foreign attendees.

Location: The tutorial will be conducted in the Mechanical Engineering Auditorium, just outside the main doors to
Watkins Hall, at the Naval Postgraduate School (NPS), Monterey, California.

Dates: The tutorial will run from 9am Monday August 7 through 11am Tuesday August 8 preceding the start of the
Modeling, Virtual Environments, and Simulation (MOVES) Institute Open House.

Registration: To attend the tutorial, register for the MOVES Open House, scheduled for August 8-10, 2006 at the
Naval Postgraduate School, Monterey, California.
Online registration: http://gallery.bcentral.com/GID5061928DD447447-Conferences.aspx
Maps and other information are available on the MOVES Institute web site: http://www.nps.navy.mil/moves/
Please RSVP your intention to attend this tutorial by sending e-mail to Terry Norbraten, MOVES Institute:
tdnorbra@nps.edu

Tutorial Schedule

Tutorial Day 1: August 7, 2006 Monday, 0900-1700
0900 Project Overview: Associate Professor Don Brutzman
0930 Introduction to Harbor Modeling and Simulation using Agent-Based Tactics and

Discrete Event Simulation (DES): LT Pat Sullivan
1030 Break
1045 Security-Assessment Demonstration for Bremerton & Pearl Harbor: LT Pat Sullivan
1230 Lunch
1330 Behavior Modeling using Viskit Event and Assembly Graphs: Dan Ancona
1415 2D/3D Scenario Generation using SavageStudio: Alan Hudson
1500 Break
1515 Building Geo-Registered X3D; Port & Harbor Models Accurately Located:
 Christian Greuel, Planet 9 Studios

 55

1545 Design of Experiments (DOE) and Cluster Operations: Rick Goldberg
1615 Break
1630 Summary, Group Discussion, Conclusions and Next Steps: Don Brutzman

Tutorial Day 2: August 8, 2006 Tuesday, 0900-1200

Hands-on Scenario Analysis Session, Q&A: to be held in the Ingersoll Building Room
366 (ING 366)

 56

APPENDIX C. AT/FP PROJECT FLYER

NPS Waterside Security (WSS) Anti-Terrorism / Force Protection (AT/FP) Project

How can we plan for the defense of our nation’s harbors and waterways in a way that shows us surprise scenarios
that we never imagined? How do we graphically visualize the tactical execution of our force-protection plans?
How do we compute statistical data to support findings of best-effort plans for our naval forces afloat? How do we
use Java to model opponents, render entire harbors using interactive 3D graphics, and even run grid clusters to
provide high-confidence analytic results? This project shows how.

The NPS waterside security project is a group effort. A top-notch team of government, industry and academic
experts is using Java to produce a tactical application for use in defending national harbors and waterways.
Scenarios can be autogenerated, viewed, analyzed, and manipulated by end users. Individual scenarios can be
replayed from any vantage point using agent-driven X3D graphics models. Cluster-based computational assets use
the Sun Grid Engine for massive replication of heavy-duty simulation scenarios, producing measures of
effectiveness within statistically significant, analyst-specified confidence intervals.

Key technical features include:

• End-to-end open-source Java application, using Extensible Markup Language (XML) for all datasets
• ISO-Standard Extensible 3D Graphics (X3D) scenes using military model archives
• Xj3D open-source browser built with Java for OpenGL (JOGL) rendering speed
• Web-services queries for environmental forecasts and oceanographic-dataset updates
• Runs out-of-the-box on Windows, Linux, Mac OS X, Solaris SPARC, Solaris x86 operating systems,

with NO Java recoding or X3D model adjustment required to achieve consistent operation throughout

In order to model realistic battle tactics for friendly forces and opponents, the
waterside security project uses Viskit and Simkit, open-source Java 2TM packages
built for visual creation of Discrete Event Simulation (DES) models. Simkit is used
at NPS to make advanced simulation capabilities available to analysts,
demonstrating meaningful real-world results. Simkit labs and tutorials are available
online, downloadable at https://diana.cs.nps.navy.mil/Simkit.

 57

This work was publicly demonstrated 27 July 2005 as part of the Sun Microsystems JavaONE conference keynote
session in San Francisco California. Seven thousand attendees in Moscone Center plus 250,000 remote attendees
watching the webcast saw this agent-based 3D simulation running in real time.
900,000 lines of Java library code ran on a new Java Ultra 20 Solaris PC with exceptional performance.
Viewable online at http://java.sun.com/javaone/sf/2005 (view Webcasts, Day One, minute 1:23)

The production team putting all this work together includes the following Web3D Consortium partners:

• NPS MOVES Institute, Dr. Don Brutzman, http://www.MovesInstitute.org MOVES is currently partnering
as a Sun Center-of-Excellence (COE) in Modeling and Simulation

• Planet 9 Studios, David Colleen, CEO, http://www.planet9.com
• Yumetech, Inc., Alan Hudson, CEO, http://www.yumetech.com
• Aniviza, Inc., Rick Goldberg, CEO, http://www.aniviza.com

Sponsors include:

• Naval Facilities Engineering Service Center (NFESC), https://portal.navfac.navy.mil
• Navy Modeling & Simulation Office (NMSO), http://nmso.navy.mil
• Web3D Consortium, http://www.web3D.org

Network connectivity is provided among multiple users via standards-based implementation of the IEEE Distributed
Interactive Simulation (DIS) behavior protocol. This waterside security project will soon undergo initial user testing
using naval officers at NPS, and then be tested using actual waterfront facilities. It is likely to provide significant
improvements in the situational awareness and defensive posture of ships defending against terrorist attacks in port.
The demonstrated scenario features friendly security forces defending against hostile entities in a simulated attack
on Bremerton Washington harbor.

 58

May 2006 Project Update:
Modeling Pearl Harbor Waterfront

The NPS waterside-security team is currently demonstrating an updated set of software tools for modeling,
simulation, visualization and analysis of harbor defense. Current capabilities are being tested using Extensible 3D
(X3D) graphics models for Bremerton harbor, the ABOT Iraqi oil terminal and the Indian Island logistics pier. Pearl
Harbor modeling is in progress. A tutorial course is simultaneously being developed in order to rapidly expose the
combined efforts of 20 government and industry experts.

Three customers are envisioned for this integrated suite of analytic tools.

• Port security investment: how to best invest harbor-defense funds to maximize defense against risks
• Port operations: how to best deploy current assets on the water now for maximum defensive posture
• Ship + harbor coordination: help ships train sailors to be immediately effective upon entering port

This is an alpha-stage software release, being shown as a proof-of-concept tutorial to gain professional feedback.
This work is also being demonstrated as part of an invitation-only industry workshop on modeling & simulation
capabilities, hosted at NPS in Monterey California, 8-10 May 2006. All software and content models are being
produced as open source. Use of open standards and unencumbered business-friendly licenses that protect
government rights is expected to maximize potential growth and interoperability. Current work remains unclassified
with access restrictions designated For Official Use Only (FOUO). Initial release is scheduled for 10 August 2006
at the NPS MOVES Open House. https://www.MovesInstitute.org

Risk models are connected and run in a complex adaptive multi-agent system. Simulations are either visualized
“live” in real time on the desktop, or massively replicated for statistical analysis using low-cost computer clusters.
Such Monte Carlo repetition lets analysts confidently determine whether defensive improvements are truly effective,
using either commodity computers or high-performance computing assets.

In addition to tool development, the group is modeling the Pearl Harbor waterfront for in-depth risk analysis. The
next major milestone will support automatic creation of detailed analyst-annotated risk-analysis reports.

A Navy Lieutenant master’s student
from NPS and a professional
photographer from Planet 9 Studios
were given official port access to Navy
facilities in Pearl Harbor, shooting 2,700
photographs in 4 days. These are being
assembled into a high-fidelity X3D
model of the Navy-controlled port.

This real-world study evaluating Pearl
Harbor is the first large-scale test of this
application and research. Results are
being geared to support analysts
responsible for port security.

This approach is repeatable for other
ports and harbors, adding a tool-based
suite of new capabilities to homeland
defenders.

 59

The new Savage Studio authoring tool supports scenario creation with
2D/3D “pick and place” functionality. In other words, users can lay
down a harbor-defense scenario by selecting ship assets from a menu,
then drag and rotate ship icons into position. Simulations are then ready
to start.

The just-published Savage Modeling and Analysis Language (SMAL) is
used to embed well-defined metadata annotation capabilities within each
model, suitable for further tool exposure using the Extensible Markup
Language (XML).
Thus models “know what they are” and analysts merely need to
customize capabilities to match the current scenario.

Use of ISO-standard X3D graphics means that the growing ship-model
library can remain royalty free, open source, broadly interoperable, and
approved for Navy use.

“Intelligent” adversaries are modeled using an
intuitive flowchart-style tool that lays out tactics
for “good guy” and “bad guy” behaviors using
terms similar to those used by actual warfighters.

Libraries of tactical agent-based behaviors are
being developed by active-duty Naval officers.
Scenario creation and design of experiments for
new ships and ports is thus simple and
repeatable.

Terrorist models can also improve tactics and
their probability of success over replications,
exposing potential areas of vulnerability.
Simulation insights thus enable analysts to
recommend prioritized harbor improvements.

The ability to accurately reproduce
simulated and actual scenarios is
expected to increase user confidence
that the tool provides satisfactory and
dependable analysis results.

Navy and Coast Guard sailors can
further use X3D playback to visualize
their own roles in harbor defense (and
even points of view for potential
adversaries) as scenarios progress.

Project partners are documenting the
process and software tools, allowing for
repeatable approaches for all future
work and easier integration by
engineering and fleet users.

Inquiries are welcome. For further info, contact Don Brutzman (brutzman@nps.navy.mil), 1.831.656.2149.

 60

APPENDIX D. MODELING AND SIMULATION WORKSHOP CD-ROM

U.S. Government agencies and their Contractors may obtain a copy of the Workshop CD

via request to the NPS MOVES Institute.

Figure 4. May 2006 M&S Workshop CD Cover Image

Contact:

Terry Norbraten tdnorbra@nps.edu or tdnorbra@nps.navy.mil

700 Dyer Road, Wa-267
Naval Postgraduate School
Monterey, CA 93943-5001

Comm: +1.831.656.7593
DSN: 756.7593
Fax: x7599

 61

THIS PAGE INTENTIONALLY LEFT BLANK

 62

APPENDIX E. DISKIT SENSOR AND MOVER DYNAMICS:
LOGARITHMICALLY RANGED ATTENUATED TRANSMISSION LOSS

SONAR

by
Rick Goldberg, Aniviza Inc.

This document is intended to serve as background reading for implementers of Diskit Sensors, along with example material to
demonstrate application of physically based models with Diskit, Viskit and Simkit

 63

E.1 DISKIT SENSOR AND MOVER DYNAMICS

E.1.1 Overview
 Diskit provides a set of base classes for defining 3D Simkit 1 Discrete Event Simulations

(DES). This includes definitions for 3D entities, collision and sensor detection, weapons, target

and munition adjudication, scenario management, and DIS protocol communications. Diskit is

mostly based on 2D Simkit classes for the same, either directly by subclassing where possible,

or in some cases by evolving Simkit utility classes, with some added features to enable

networking and more rapid prototyping using Viskit. Diskit is part of the Viskit visual editor for

Simkit distribution.

Figure 5. Simkit, Viskit, Diskit Platform Relationships

 On top of Diskit's own base entity classes, sample classes for simulation of derivative

behavior types such as patrol craft, bridge communications, neutrals, and terrorists are included.

1 Simkit: see home page, http://diana.gl.nps.navy.mil/Simkit/

 64

E.1.2 DISMover3D
 The DISMover3D entity shown below listens for and generates a number of events that

determine the 3D position and velocity for the point center of a moving object in space. More

complex behaviors are based upon interposing filters, either by listening for these events or upon

monitoring changes to the underlying state variables.

Figure 6. DISMover3D Entity in Event Graph Form

 65

 The base DISMover3D and all subclasses take at minimum the following parameter map:

Figure 7. DISMover3D Parameters

 Events ultimately cause some state to become altered. State variables for the

DISMover3D cover speed, direction, start position, destination, movement type, and time of

movement.

Figure 8. State Variables for the DISMover3D Entity

 66

 In the Event-Graph diagram above, in most cases it is sufficient to send a StartMove

event to cause motion for the DISMover3D, which can also be reached by way of the

NextWaypoint event. The NextWaypoint event itself is loaded with a diskit.Vec3d (Vector 3D) as

the position value for the actual waypoint to go to next, as well as a double-precision valued

cruiseSpeed for how fast to get there. Once sent and received, this event causes calculation of

updated velocity information for the entity.

 This eventually leads to the fundamental question, how is time represented and managed

in a simulation? For the DISMover3D, time is a variable that can proceed in discrete arbitrary

increments. It doesn't require passage of time duration in the real sense as it is just a calculation;

when run, no more real time is needed to go from point A to B whether the distance great and

speed small, or the other way around. This is great for analysis, for example, one would not want

to wait a year to study a simulated year. For visualization and for DIS communication however,

real time must be injected into the simulation run at regular intervals independently of all other

operations.

 This is accomplished by way of Diskit's DISTimer (formerly DISPinger). The DISTimer

calculates the ratio of a given simulation time unit to real time delay, and causes the entire

simulation to simply wait and pause the simulation thread of execution for the desired interval of

real time, wake up long enough to send DIS network communication packets updating DIS

listeners with current positions for all registered movers, fire any pending events, and go back to

sleep for the next round. More about how entities are registered is outlined in section 4, Scenario

Manager.

E.1.3 Sensors, Targets and Mediators
 Diskit uses Simkit's base Sensor and Target Mediator architecture to schedule various

type detection events in the queue stream. A Sensor generally consumes some volume of space

and is located by the position of a DISMover3D that owns it. Conceptually, whenever any of the

registered Targets changes velocity vector states, a calculation is done for each Sensor and

Target to solve for any pending penetration and exit points, at some time in “the future” of the

event queue, and at once canceling any such already-pending events that become invalid, thereby

removing them from the queue. This is in contrast to fixed-timestep frame-by-frame collision

 67

detection architectures, and allows for more complex behavior systems such as planned obstacle

avoidance, for example.

Event Queue

V0

V1

cancelled
collision event

cancelled
collision event

Event Queue

V0

V1

cancelled
collision event

cancelled
collision event

Figure 9. Diagram of Cancelling Invalid Pending Events Due to Change in Target Velocity Vector
State

 The base classes provided by Diskit that implement the Sensor interfaces are simplified

moving sphere and ray intersections. However the architecture is intended to be extendable in

such a way as to enable more complex detection algorithms and geometries. Once a Target

enters or exits the range of a Sensor for instance, there may be additional logic to describe

whether or not the mere EnterRange event is sufficient to cause a Detection, whereas the default

SphereCutterSensor is always true for EnterRange. An alternate Sensor type can be registered

with the ScenarioManager that may or may not schedule a Detection based upon probability

parameters, or as well may check some other geometry.

 The default intersection test for SphereCutterSensor only takes into account the point-ray

intersection of a DISMover3D's velocity vector versus the moving sphere boundary of a sensor,

and does not factor in the DISMover3D's own geometric bounds. By default, the DISMover3D

has zero spatial bounds. Subclasses of course do usually know about their dimensions, and more

advanced applications are required to specify higher fidelity models. But how is this

accomplished?

 68

 First let's examine the algorithmic representation of simplified intersection math given by

Diskit's Intersector3D class.

 1 /*
 2 * Intersector3D.java
 3 *
 4 * Created on November 18, 2004, 11:17 AM
 5 * @author: Rick Goldberg
 6 */
 7
 8 package diskit;
 9
 10 public class Intersector3D {
 11
 12 private Intersector3D() {
 13 }
 14
 15 /** Solve moving sphere initersection */
 16
 17 public static double[] solve(Vec3d sensorLocation, Vec3d sensorVelocity,
 18 double sensorRange, Vec3d targetLocation, Vec3d targetVelocity) {
 19
 20 double px, py, pz, qx, qy, qz, vx, vy, vz, ux, uy, uz;
 21 double[] times = new double[2];
 22
 23 //System.out.print("targetLocation :");
 24 //targetLocation.print();
 25
 26 /* Let P = target position */
 27 px = targetLocation.get(0);
 28 py = targetLocation.get(1);
 29 pz = targetLocation.get(2);
 30
 31 //System.out.print("sensorLocation :");
 32 //sensorLocation.print();
 33
 34 /* Let Q = sensor position */
 35 qx = sensorLocation.get(0);
 36 qy = sensorLocation.get(1);
 37 qz = sensorLocation.get(2);
 38
 39 //System.out.print("targetVelocity :");
 40 //targetVelocity.print();
 41
 42 /* Let V = target velocity */
 43 vx = targetVelocity.get(0);
 44 vy = targetVelocity.get(1);
 45 vz = targetVelocity.get(2);
 46
 47 //System.out.print("sensorVelocity :");
 48 //sensorVelocity.print();
 49
 50 /* Let U = sensor velocity */
 51 ux = sensorVelocity.get(0);
 52 uy = sensorVelocity.get(1);
 53 uz = sensorVelocity.get(2);
 54
 55 //System.out.println("sensorRange :"+sensorRange);
 56
 57 /* Solve the intersection of the ray from P through a sphere about Q */
 58 /* First x^2 + y^2 + z^2 = R^2 , but in cartesean coordinates, Q is */
 59 /* also moving. Transformation of the coordinates to Q's own space */
 60 /* can be simplified since there is no scale or rotation or skew or */
 61 /* perspective, then Q is not moving and the values can be solved for*/
 62 /* t by the quadratic equation, giving relative entry and exit times.*/
 63
 64 /* Step 1. Transform V to Q's coordinate system */
 65

 69

 66 vx -= ux;
 67 vy -= uy;
 68 vz -= uz;
 69
 70 /* Step 2. Transofrom P to Q's coordinate system */
 71
 72 px -= qx;
 73 py -= qy;
 74 pz -= qz;
 75
 76 //System.out.println("px: "+px+" py: "+py+" pz: "+pz);
 77 //System.out.println("vx: "+vx+" vy: "+vy+" vz: "+vz);
 78
 79 /* For the point S in Q space now represented by P, parametrically is */
 80 /* Vt + P = S(t) , note V is also now in Q space but in practice save */
 81 /* some runtime memory by reusing the variables but keeping the name. */
 82 /* eg:
 83 /* x(t) = (vx * t) + px;
 84 /* y(t) = (vy * t) + py;
 85 /* z(t) = (vz * t) + pz; */
 86 /* then x^2 + y^z + z^2 = r^2
 87 * expanding out, we see that we get something of the form
 88 * At^2 + Bt + C = 0 and solve quadratically for time0 and time1 */
 89
 90
 91 double a = (vx*vx + vy*vy + vz*vz);
 92 double b = (2*(vx*px+vy*py+vz*pz));
 93 double c = (px*px + py*py + pz*pz) - sensorRange*sensorRange;
 94
 95 //System.out.println("a: "+a+" b: "+b+" c: "+c);
 96
 97 double root = Math.sqrt(b*b - 4*a*c);
 98
 99 //System.out.println("b^2 - 4ac :" + (b*b - 4*a*c));
100 //System.out.println("root :" + root);
101
102 if (root == Double.NaN || root == Double.POSITIVE_INFINITY || root ==
 Double.NEGATIVE_INFINITY) {
103 times[0] = times[1] = root;
104 } else {
105 times[0] = (-b - root)/(2*a);
106 times[1] = (-b + root)/(2*a);
107 }
108
109 //System.out.println("times: "+times[0]+" "+times[1]);
110
111 return times;
112 }
113 }

 The results from the above code represent the relative times of penetration and exit, if

they exist, and further show that if the DISMover3D was already inside the Sensor range,

times[0] is negative, while times[1] being negative in this case would never happen since the ray

does not terminate.

 This is fine if the entity in question is small in comparison to the Sensor range. However

if the Sensor range is small in comparison to the Target, for example if a visual contact during

maneuvers, or if the bounds need to reflect a more accurate outline of collision between objects,

some refinement may be required. Diskit optimizes the detection by breaking the problem down

 70

into EnterRange/ExitRange events which are generalized by computing low-cost sphere

intersection regions. From there a higher-fidelity model may be used to further see if an actual

Detection happened. This factor is accounted for in the Mediator class for the particular Sensor

type, as shown below in SphereCutterMediator's EnterRange event handler for example:

1 public void doEnterRange(Sensor sensor, Mover3D target) {
2 Mover3D contact = (Mover3D) contacts.get(target);
3 if (contact == null) {
4 contact = new Contact(target);
5 contacts.put(target, contact);
6 }
7 sensor.waitDelay("Detection", 0.0, new Object[] { sensor, contact });
8 }

 Two things are worth noting about the above code. A list of Contacts is maintained for all

Mover3D's in range, which represent distinct positions for their Mover3D's which helps keep the

entities' internal operations insulated from each other. Also note the SphereCutterSensor has a

0.0 time delay until it gets a Detection event; clearly, any algorithm for computing time delay

can be inserted instead.

 To answer the question at the beginning of this section, a more complex Sensor can be

supplied by the user along with a Mediator for that Sensor that can calculate a

Detection/UnDetection time between EnterRange and ExitRange events, given enough

information from the Sensor and Mover3D of the target. Note that DISMover3D is an

implementation of the Diskit Mover3D interface.

 Below are the Sensor and Mover3D interfaces which can be used to build complex

detection algorithms.

 1 package diskit;
 2
 3 import java.util.Collection;
 4 import simkit.SimEntity;
 5 import simkit.smdx.MovementState;
 6
 7 /**
 8 *
 9 * @author ahbuss
10 */
11 public interface Sensor extends SimEntity {
12
13 public Vec3d getLocation();
14
15 public Vec3d getVelocity();
16
17 public MovementState getMovementState();
18
19 public double getMaxRange();
20

 71

21 public void setMaxRange(double range);
22
23 public void doDetection(Sensor sensor, Mover3D contact);
24
25 public void doUnDetection(Sensor sensor, Mover3D contact);
26
27 public Collection getContacts();
28
29 public void setMover(Mover3D mover);
30
31 public Mover3D getMover();
32
33 }

 1 /*
 2 * Mover3D.java
 3 *
 4 * Created on October 6, 2004, 9:04 AM
 5 */
 6
 7 package diskit;
 8
 9 import simkit.SimEntity;
10 import simkit.smdx.MovementState;
11
12
13 public interface Mover3D extends SimEntity, Locatable3D {
14
15 public Vec3d getVelocity(); // dx,dy,dz
16
17 public double getCruiseSpeed();
18
19
20 public void setMaximumSpeed(double maxSpeed);
21 public double getMaximumSpeed();
22
23 public void setStartPosition(Vec3d sp); // start at xyz
24 public Vec3d getStartPosition();
25
26 // these two do basically the above two
27 public void setDestination(Vec3d d, double cs); // get there this fast
28 public void setDestination(Vec3d d); // get there max speed
29
30 public Vec3d getDestination();
31 // gets the location from the currentPosition,
32 public Vec3d getLocation();
33
34
35 public MovementState getMovementState();
36
37 public TacticalMode getTacticalMode();
38
39 public String getEntityType();
40
41 public void stop();
42
43 public void setMoverID(int id);
44
45 public int getMoverID();
46
47 public void setForceID(ForceID forceID);
48
49 public int getForceID();
50
51 public String getColor();
52
53 public diskit.SMAL.SMAL getSMAL();
54 }

 72

E.1.4 ScenarioManager
 Putting it all together is the ScenarioManager, which handles registration of Sensors and

Targets (Locatable3D components of Mover3D's.) Registration is simply connecting

propertyChangeListeners and simEventListeners, adding Mediators in an automated way.

Entities are connected to the ScenarioManager so that the manager can send and receive events

to each, and upon startup, anything that can be a Target or Sensor reports in. The

ScenarioManager is a subclass of the SensorTargetReferee, which is where the actual

Intersector3D is used from section 3. The ScenarioManager also handles any other kind of

contact between arbitrary parties, such as Munitions, Weapons, Impact, Escort compliance, and

synchronization with DIS packets.

 The current implementation enables quick connection of SphereCutterSensor's and

available target types, however, it is not required to use the ScenarioManager's interface to

register a Sensor, Target, and Mediator, which can be done by calling upon static methods of the

base SensorTargetMediatorFactory.

Figure 10. Simple SonarMediator Event Graph

 73

 The above example from diskit.SonarMediator.xml generates the glue code between

Diskit's default Sensor/Target/Mediator pattern, and our customized Sonar sensor (see section

1.3). The main difference is that instead of an EnterRange event immediately scheduling a

Detection event, the Sonar Sensor receives notification that it is time to start checking higher-

fidelity logic encapsulated within the Sonar's event graph.

E.1.5 Example Multisectioned Log Range Attenuated Transmission Loss Sonar
(MiltiLRATL)
 With the above interfaces, we can now construct a general purpose sensor that simulates

attenuation of a source signal as it propagates and calculates a Figure of Merit (FOM) for the

Detection and UnDetection events. The sensor starts checking versus a FOM once the extreme

boundary sphere has been penetrated, but only if the Target is within a visible section of the

sensor. The example below shows a baffle zone or blind spot where no FOM-based detection can

be checked. Other shapes and configurations are possible, for example a side mounted or an

omni-directional sensor.

 Baffled Sweep Approximation:

Baffle zone

Figure 11. Looking Down on “Sweep”

 74

Figure 12. Baffle Geometry divided into triangular sections, viewed from above

Figure 13. Side View of Approximation Geometry. First cut, “watermelon” slices.

 75

At this point, we can generalize to more simplified forms knowing the potential intersections at

each of the far corners.

Figure 14. Further Simplification of Volume Geometry

After removing the bottom subsection, two six-sided volumes for this slice:

Figure 15. Final Geometry of Volume Space

 76

 The cross-section shown above represents only one of several that get checked; the sum

total make up a complete sensor footprint for the sake of a single Target's Detection/UnDetection

criteria.

 A sensor composing these six-sided volumes can check each to see if it gets penetrated

by the velocity vector of the Target. If each side of a volume is defined counter-clockwise, then

the dot product is always negative for each normal vector taken as a dot product with a vector

going from each vertex to the point in question (if that point is inside the volume). A

computational optimization might be to calculate an interior point of the facet rather than check

each vertex.

 That's fine for seeing if a point is inside, but having detected a ray intersection in time,

the probability of detection should be proportional to the time in the volume, and inversely

proportional to the square of the distance of the points along the ray to the center of the beam.

 Another technique for containment is to use energy field equations; conceptually taking

the line integral around a function on a plane that contains a singularity yields a non-zero

number. A Cauchy generating function for this in complex coordinates might be 2
01/()

c
z z dz−∫ .

 The nice property is that the anti-derivatives in this case are bounded by simple line

segments over a few additions and subtractions if numerically integrated. This generalizes to 3D

using Greens and Stokes Theorems with a similar generator.

 Once the ray projected from the moving target box vertex is determined to be within a

scan volume, probability of detection could be approximated by
1

0

2

1
(())

t

t

K
d t∫ dt where K is some

constant determined by parameters, d is the distance to the point at time t, t is time in volume,

and where 2 2() | (()) | ((()) (()) (()))x x y y z zd t P t C P t C P t C P t C= − = − + − + − 2 .

 For simplicity, K could be assumed to be constant throughout the ray, so volumes should

be selected to represent constant regions.

 This could be computationally expensive, another simplification may be to state a “lock-

in” period for the sensor, inversely proportionate to the profile area of the target, and

proportionate to the square of the average distance and some constant. Upon

 77

EnterRange/ExitRange, the time in the range is calculated, the probability being the proportion

of the time-in to the lock-in time; greater than 1.0 means certain detection.

 A Detection event would then be scheduled at the first certain lock-in time, or not if this

time is after the ExitRange, in which case a random number is chosen 0.0-1.0 that if below the

time proportion value a Detection is scheduled during the lock-in phase depending on the

proportion of the random variable to the threshold. ExitRange for simplicity in this case would

schedule the UnDetection of the Sensor, since it is “locked-in”. Of course, if a target was in

sufficiently long for certain lock in, there could be the same possibility that a detection occurred

during the lock-in phase, in which case the Detection event would be advanced similarly.

 Then it actually does remain to determine the enter and exit points and times for a six-

sided volume against a ray, instead of calculating a probability integral directly through the

volume as paragraph prior to prior. Fortunately, the ray is infinite at one end. Given a normal to a

plane and a center point, it is easy to see where a ray intersects it, solving for 0, however, the

intersection point still needs to be checked vs. the facet edges to see if it is inside the facet.

 Again Cauchy's integral looks interesting, since the bounds are 4 parameterized vectors

the computation is relatively cheap, or could be solved by residue calculus. Unfortunately, the

coordinates are not transformed to the Complex-Z plane.

 Experimental evidence shows that generalization to 3D line integrals yields reasonably

good results, some noise near very sharp corners may give false readings depending on the

integration approximation used. Since the volumes are somewhat regular, very sharp corners

should not be a concern, and furthermore it may be possible to solve exactly without numerical

integration.

 Even so, going back to the top, it might be just as fast to use the containment test by

vector and dot products, divide up the ray into the least reasonable number of samples between

EnterRange and ExitRange and see if any of the samples are captured, then take the amount of

time between captured samples for the ratio test in each volume.

 78

Figure 16. EnterRange and ExitRange Point Depicted

 At this stage of the analysis, one of two paths should be chosen, subsample the ray or

check for bounds intersection on the facets. Each has benefits and drawbacks.

 Back to the “energy potential” calculus, it should be a simple calculation provided the

force function is selected as such. The idea is to place a source or sink at the test point of

intersection and see if any work is done by going around the facet edges. This technique has the

benefit that the winding order is irrelevant, anything significantly different from 0 in either the

positive or negative direction indicates the point was circumnavigated. Another benefit to this

technique is it instantly generalizes to more complex regions with more edges, curves, non-

convex contours, 3D surfaces, even bow-ties and other strange shapes, simply by supplying a

longer list of vertices.

Figure 17. Energy Potential Calculus

 79

 One such force function could be 0 0(, ,) /() /() /()F x y z i x x j y y k z z= − + − + − 0

whose partial derivatives are easy to see, and will blow up as
0

lim ()
r r

F r
→

.

 Taking the line

integral 0 0(). (/() (/() (/())
c c

F r dr i dx x x j dy y y k dz z z= − + − + −∫ ∫ 0 parameterized over s there

are 4 line segments, as s goes from 0 to 1 where each interval

represents the parameterization of the line segment from each vertex to the next.

0 1 1 2 2 3 3 0[(,), (,), (,), (,)]s s s s s s s s

 A line segment between vertices mV and nV from ms s sn< < is represented by

() (/) (/)mn m nn m n m m nr s V s s s s V s s s s= − − + − − . Then

() 1/(/))mn m n m n n m m nr s s s V V s V s V s⎡ ⎤= + − + −⎣ ⎦ , or expanded out

[]

[]

() 1/() ()

() 1/() ()

() 1/() ()

mn m n mx nx nx m mx n

mn m n my ny ny m my n

mn m n mz nz nz m mz n

x s s s v v s v s v s

y s s s v v s v s v s

z s s s v v s v s v s

= − − + −

⎡ ⎤= − − + −⎣ ⎦
= − − + −

 Since ()d r s dx i dy i dz k= + + , or expanding from above,

/ () /(
/ () /(

/ () /(

mn mx nx m n

mn my ny m n

mn mz nz m n

dx ds v v s s
dy ds v v s s

dz ds v v s s

= − −
= − −

= − −

)
)

)

 The integral becomes the following, where n is consecutive to m except at the last edge of

the facet, then n is 0:

3
00

0

0

[/(1/()[()])]

[/(1/()[()])]

[/(1/()[()])]

[(() /() (() /() (() /()]

n

m n mx nx nx m mx nm

m n my ny ny m my n

m n mz nz nz m mz n

mx nx m n my ny m n mz nz m n

i s s v v s v s v s x

j s s v v s v s v s y

k s s v v s v s v s z

i v v s s j v v s s k v v s s ds

− − + − −

+ − − + − −

+ − − + − −

⋅ − − + − − + − −

∑ ∫

which can now be simplified for s, carrying out the dot product.

 80

 First let (
()

mx nx
xmn

m n

v va
s s
−

=
−

) and similarly for noting they represent the

derivatives above, and in the algebraic simplification of F (omitted for brevity) they also appear

as coefficients.

ymn zmna and a

 Then let bxmn= vnx sm− vmx sn and similarly for b ymn ,bzmn. This makes each term of the

dot product in the integral take the form
0()

a
as b x+ −

, or with a factored out,
0

1
({ }b xs

a
−

+
) and

similarly for y and z. Finally this yields a simple integral solution in terms of a sum of natural

logs, carefully noting that and change between m’s and n’s throughout the facet edges

as above.

'a sα 'b sα

 Expanding the integral in terms of ds gives

0

0 0 0

1 1 1{ }
(() /) (() /) (() /)

n

m

sM

m s
x x y y z z

ds
s b x a s b y a s b z a=

+ +
+ − + − + −∑ ∫

which conveniently solves to
() () ()
() 0 () 0 ()0 0

ln(| (() /()) |)| ln(| (() /()) |) | ln(| (() /()) |) |n n

m m

M
n

m

s s s
x x s y y s z zm

s b x a s b y a s b z a
=

+ − + + − + + −∑ s

2 Θ

.

 An optimization in the algorithmic expression would be to save the n's as the next m's.

Again note above M == 3 for the facet shown, and n is consecutive to m except at the last edge of

the facet where n is 0.

 With that we now have an easy-to-solve equation that should be close to 0 if the point in

question isn't contained, or significantly different than 0 otherwise. Now an algorithmic

representation can be defined. While possible, it isn't important to describe the mathematical

solution in terms of event graphs, but clearly the graphs should be able to implement the math as

a utility.

 The above treatment should also be considered for implicit surfaces, replacing the vertex

calculations for the equation for the surface. For example the cardioid

 would trace out a forward facing cardioid volume.

However, using the 6-sided polygon enables more varied shapes to easily be constructed, if only

at the cost of more intersection tests.

2/() cos , /() sinx r z a y r z a= + Θ = +

 81

 In practice however, the above treatment is rather complex and more research

examination would be needed to test the equations, and ultimately a simplified geometry may be

easier to implement; instead of trying to solve the generalized case of intersection against a

possibly concave or bow-tied perimeter, establishing a prerequisite that all facets are convex

greatly simplifies the problem to just a few vector cross-products.

 The following code section makes the convex assumption about the Facet's shape, then

each ray extending from each vertex through any sample point's cross-product with the Facet's

normal will all be in the same direction if the sample point is inside the facet, or not, if it is

outside.

 1 /*
 2 * Facet.java
 3 *
 4 * Created on May 20, 2006, 8:45 PM
 5 *
 6 */
 7 package diskit;
 8
 9 import diskit.util.Transform;
 10
 11 /**
 12 *
 13 * @author Rick Goldberg
 14 */
 15 public class Facet {
 16 Vec3d[] vertices;
 17 public static final double epsilon = .1;
 18 private double tInt = 0.0;
 19
 20 public static String[][] parameterMap = new String[][] {
 21 {
 22 "diskit.Vec3d[]", "vertices"
 23 }
 24 };
 25
 26 private static final boolean debug = false;
 27
 28
 29 /** Creates a new instance of Facet
 30 * Assumes vertices are in ccw order about the perimeter,
 31 * looking down Z+ and all affine rotations, and that there are N>2 of them, and
 32 * no vertices are sequentially duplicated. The Facet is convex!
 33 */
 34 public Facet(Vec3d[] vertices) {
 35 this.vertices = new Vec3d[vertices.length + 1];
 36 for (int i = 0; i < vertices.length; i ++) {
 37 this.vertices[i] = new Vec3d(vertices[i]);
 38 if (debug) System.out.println("Vertex ["+i+"] "+vertices[i]);
 39 }
 40 // add an extra vertex at the end to simplify loop around
 41 this.vertices[vertices.length] = new Vec3d(vertices[0]);
 42 }
 43
 44 /** Given a location and a direction, calculate
 45 * intersection point, or null if none
 46 */
 47 public Vec3d intersect(Vec3d point, Vec3d direction) {
 48 Vec3d pt = new Vec3d();

 82

 49
 50 // create normal to plane for plane vs. ray intersect
 51 Vec3d v0 = new Vec3d(vertices[1]);
 52 Vec3d v1 = new Vec3d(vertices[1]);
 53 v0.sub(vertices[0]);
 54 v1.sub(vertices[2]);
 55
 56 // calculate normal to plane
 57 Vec3d normal = new Vec3d();
 58 normal.cross(v0,v1);
 59 normal.normalize();
 60
 61 // calculate constant D for plane eqn
 62 // with normal N = (A,B,C)
 63 // Ax + By + Cz = D
 64 // for some/any vertex point
 65 double d = normal.get(0)*vertices[0].get(0) + normal.get(1)*vertices[0].get(1) +
 normal.get(2)*vertices[0].get(2);
 66
 67 if (debug) System.out.println("Normal to plane is "+normal);
 68 if (debug) System.out.println("Plane Constant D is "+d);
 69
 70 // find intersection from point along direction to plane
 71 // solve for t parametrically, ray becomes
 72 // point + direction * t as 0 < t < inf
 73 // or
 74 // x(t) = p[0] + d[0] * t
 75 // y(t) = p[1] + d[1] * t
 76 // z(t) = p[2] + d[2] * t
 77 // then for t
 78 // t = {D - [N[0]*P[0] + N[1]*P[1] + N[2]*P[2]} / { N[0]*V[0] + N[1]*V[1] +
 N[2]*V[2]}
 79 double t;
 80 double nx, ny, nz, px, py, pz, dx, dy, dz;
 81 nx = normal.get(0);
 82 ny = normal.get(1);
 83 nz = normal.get(2);
 84 px = point.get(0);
 85 py = point.get(1);
 86 pz = point.get(2);
 87 dx = direction.get(0);
 88 dy = direction.get(1);
 89 dz = direction.get(2);
 90 try {
 91 t = (d - (nx*px + ny*py + nz*pz)) / (nx*dx + ny*dy + nz*dz);
 92 } catch (java.lang.Exception e) {
 93 // divide by zero means parallel
 94 return null;
 95 }
 96 if (debug) System.out.print("t intersect parameterized at "+t+" ");
 97 if (debug)if (t<=0.0)System.out.println("Never intercepts, going backwards then...");
 98 // then substitute back into line eqn to get point from t
 99 //
100 pt.set(0,px+dx*t);
101 pt.set(1,py+dy*t);
102 pt.set(2,pz+dz*t);
103 if (debug) System.out.println(pt);
104
105 // check containment of perimeter defined by vertices, or return null if not
 contained
106 // see: "Diskit Sensor and Mover Dynamics" section 5
107 // In terms of DIS coordinates, looking down, in the +z direction,
108 // a non-concave facet is wound ccw iff every surface normal
109 // points up, -z direction, as calculated by drawing a vector from each
110 // vertex to the previous and the next in the order given.
111 // ie
112 // N(Vm) = (Vm-1 - Vm) X (Vm+1 - Vm)
113 // We've already calculated a normal, and it adheres to this
114 // convention
115 // For a point anywhere on the plane P will be inside the
116 // facet if for each Vm

 83

117 // C(Vm) = (P- Vm) x (Vm+1 - Vm)
118 // C(Vm) is in same direction as N
119 // or
120 // C(Vm) . N > 0
121 // and if C(Vm) is normalized by its length
122 // C(Vm) . N ==~ 1.0
123 // so that Sum (C (Vm), m=0,M) ==~ M if P is inside the facet.
124
125
126 // recall 0th is copied to vertices[vertices.length]
127 // numEdges is vertices.length-1
128 double nE = (double)vertices.length-1.0;
129 if (debug) System.out.println("Edge determinator nE "+nE);
130 Vec3d p0 = new Vec3d(pt);
131
132 for (int i = 0; i < vertices.length-1; i++) {
133 Vec3d V1 = new Vec3d(vertices[i+1]);
134 V1.sub(vertices[i]);
135 Vec3d VP = new Vec3d(p0);
136 VP.sub(vertices[i]);
137 VP.cross(V1);
138 VP.normalize();
139 nE -= VP.dot(normal);
140 if (debug) System.out.println("nE => "+nE);
141 }
142
143 if (Math.abs(nE) < epsilon) {
144 // bingo !!
145 if (debug) System.out.println(pt+ " is inside facet");
146 this.tInt = t;
147 return pt;
148 }
149 return null;
150 }
151
152 /**
153 * same as intersect() except returns time of intersection
154 * in vec[3] as part of a Vec4d
155 */
156 public Vec4d intercept(Vec3d point, Vec3d velocity) {
157 Vec3d intersection = intersect(point, velocity);
158 if (intersection != null) {
159 Vec4d interception = new Vec4d(intersection.get(0), intersection.get(1),
 intersection.get(2), tInt);
160 return interception;
161 }
162 return null;
163 }
164
165 /**
166 * returns a copy of the Facet as transformed
167 */
168 public Facet transform(Transform t) {
169 Vec3d[] verts = new Vec3d[vertices.length-1];
170 for (int i = 0; i < verts.length; i++) {
171 verts[i] = new Vec3d(vertices[i]);
172 t.transform(verts[i]);
173 }
174 return new Facet(verts);
175 }
176
177 }

 84

 With the above transformable Facet, now a solid can be assembled as per the prior

diagrams. This will be the basic building block for the sensor's capture volumes, the

QuadVolume provides the same simple intersect method as the Facet, a call to intersect causes

QuadVolume to call intersect on all its Facets.

 1 /*
 2 * QuadVolume.java
 3 *
 4 * Created on June 15, 2006, 5:00 PM
 5 *
 6 */
 7
 8 package diskit;
 9 import diskit.util.Transform;
 10
 11 /**
 12 *
 13 * @author Rick Goldberg
 14 */
 15 public class QuadVolume {
 16 // assumptions: this is a volume with 6 x 4 sided facets
 17 protected Facet[] facets;
 18 protected Transform transform;
 19 public static String[][] parameterMap = new String[][] {
 20 {
 21 "diskit.util.Transform", "transform",
 22 "diskit.Facet", "top",
 23 "diskit.Facet", "bottom",
 24 "diskit.Facet", "front",
 25 "diskit.Facet", "back",
 26 "diskit.Facet", "left",
 27 "diskit.Facet", "right"
 28 },
 29 {
 30 "diskit.util.Transform", "transform",
 31 "diskit.Facet[]", "facets"
 32 }
 33 };
 34 // in no particular reason of order:
 35 // 0 top
 36 // 1 bottom
 37 // 2 front
 38 // 3 back
 39 // 4 left
 40 // 5 right
 41
 42 public QuadVolume(Transform transform, Facet top, Facet bottom, Facet front, Facet back,
 Facet left, Facet right) {
 43 this.transform = transform;
 44 this.facets = new Facet[6];
 45 this.facets[0] = top.transform(transform);
 46 this.facets[1] = bottom.transform(transform);
 47 this.facets[2] = front.transform(transform);
 48 this.facets[3] = back.transform(transform);
 49 this.facets[4] = left.transform(transform);
 50 this.facets[5] = right.transform(transform);
 51 }
 52
 53 public QuadVolume(Transform transform, Facet[] facets) {
 54 this.transform = transform;
 55 this.facets = new Facet[6];
 56 for (int i = 0; i < facets.length; i++) {
 57 this.facets[i] = facets[i].transform(transform);
 58 }
 59 }

 85

 60
 61 protected QuadVolume() {
 62 this(new Transform(), new Facet[0]);
 63 }
 64
 65 // find interception points in time (v0,v1,v2,t0)
 66 // against the 6 sided volume
 67 // should return 2 points, or null
 68 public Vec4d[] intercept(Vec3d point, Vec3d velocity) {
 69 Vec4d[] interceptions = new Vec4d[6];
 70 Vec4d[] intercepts = new Vec4d[2];
 71 int c = 0;
 72 for (int i = 0; i < 6; i ++) {
 73 Vec4d v = facets[i].intercept(point,velocity);
 74 if (v != null) {
 75 interceptions[c++] = v;
 76 }
 77 }
 78 // there should be either 2 times or none
 79 // could be edge or vertex
 80 if (c>1) {
 81 intercepts[0] = interceptions[0];
 82 final double eps = .01;
 83 for (int i = 0; i < c; i++) {
 84 if (Math.abs(intercepts[0].get(3) - interceptions[i].get(3)) > eps) {
 85 intercepts[1] = interceptions[i];
 86 break;
 87 }
 88
 89 }
 90 // check possible edge/corner condition
 91 if (intercepts[1] == null) intercepts[1] = intercepts[0];
 92 // return them sorted in time
 93 if (intercepts[0].get(3) > intercepts[1].get(3)) {
 94 Vec4d tmp = intercepts[0];
 95 intercepts[0] = intercepts[1];
 96 intercepts[1] = tmp;
 97 }
 98 return intercepts;
 99 }
100 else return null;
101 }
102
103 }

 Finally a SonarScan can be assembled from an array of QuadVolumes. In this case,

SonarScan will create the “pie-sliced inwardly-squashed semi-cylinder” as depicted earlier,

however any grouping of arbitrary 6-sided shapes can be similarly constructed. Furthermore, in

the SonarScan object, 16 such volumes are created omni-directionally and stacked in 2 layers of

8, each of which is only checked if it is marked “on”, and by default they are all on.

 A correction factor is used to adjust the radial endpoints to just beyond the outer

bounding sphere, such that the far edges only touch the sphere at one point each. This is done

because it is better to check and detect nothing than not to check when there could be something

detectable.

 86

Correction

Outer

Inner

Figure 18. Showing Comparison between an Inner and Outer Approximation to the Sphere by a
Facet.

 Since these wedges are / 4π radians, the radial correction factor is 1.0/0.707.

 1 /*
 2 * SonarScan.java
 3 *
 4 * Created on September 1, 2006, 10:20 AM
 5 *
 6 * Creates a set of QuadVolumes that form a sort of layered-pie.
 7 *
 8 */
 9
 10 package diskit;
 11 import diskit.util.Transform;
 12 import diskit.Facet;
 13 import java.util.Vector;
 14
 15 /**
 16 *
 17 * @author Rick Goldberg
 18 */
 19 public class SonarScan {
 20
 21 Transform transform;
 22 double maxRange;
 23 QuadVolume[][] scanVolumes = new QuadVolume[8][2];
 24 // looking down z, with x in front, going the 8 xy slices
 25 // three parallel polylines trace out the sphere latitudinally from the equator,
 26 // fourth and pole not used
 27 Vec3d[] topEdge = new Vec3d[8];
 28 Vec3d[] midEdge = new Vec3d[8];

 87

 29 Vec3d[] botEdge = new Vec3d[8];
 30
 31 private boolean[][] activeVolumes = new boolean[8][2]; // check activeVolume[0][n]
 forward right, [7][n] forward left
 32
 33 /**
 34 * Creates a new instance of SonarScan
 35 * Simplifies creating scan wedges of QuadVolumes that contain portions of a sphereical
 volume.
 36 * Sets up 8 sectors, which are 2 layers deep, for a total 16 QuadVolumes.
 37 *
 38 */
 39 public SonarScan(Transform transform, double maxRange) throws IllegalArgumentException {
 40
 41 this.transform = transform;
 42 this.maxRange = maxRange;
 43
 44 // adjustment factor, to circumscribe the sphere with planars instead of other way
 around
 45 // generate these radii
 46 double topL = maxRange/Math.cos(Math.PI/4.0);
 47 double topH = 0.0;
 48 double midL = topL * Math.cos((1.0/8.0) * Math.PI);
 49 double midH = topL * Math.sin((1.0/8.0) * Math.PI);
 50 double botL = topL * Math.cos((1.0/4.0) * Math.PI);
 51 double botH = topL * Math.sin((1.0/4.0) * Math.PI);
 52 for (int i = 0; i < 8; i++) {
 53 double angle = ((double)i) * Math.PI / 4.0;
 54 topEdge[i] = new Vec3d(topL*Math.sin(angle),topL*Math.cos(angle),topH);
 55 midEdge[i] = new Vec3d(midL*Math.sin(angle),midL*Math.cos(angle),midH);
 56 botEdge[i] = new Vec3d(botL*Math.sin(angle),botL*Math.cos(angle),botH);
 57 }
 58
 59 scanVolumes = createVolumes();
 60
 61 }
 62
 63 // see order in createVolumes ... [8][2]
 64 public void setActiveVolumes(boolean[][] volumes) {
 65 this.activeVolumes = volumes;
 66 }
 67
 68 public QuadVolume[][] createVolumes() {
 69
 70 // create 2 layers
 71 for (int i = 0; i < 2; i++) {
 72 // of 8 slices
 73 Vec3d[] tops, bottoms;
 74 if (i == 0) {
 75 tops = topEdge;
 76 bottoms = midEdge;
 77 } else { // i==1
 78 tops = midEdge;
 79 bottoms = botEdge;
 80 }
 81 for (int j = 0; j < 8; j++) {
 82 int k = (j == 7) ? 0 : j + 1;
 83 Facet top, bottom, front, back, left, right;
 84 Vec3d scaledK, scaledJ;
 85 scaledK = new Vec3d(tops[k]); scaledK.scale(.001);
 86 scaledJ = new Vec3d(tops[j]); scaledJ.scale(.001);
 87 top = new Facet(new Vec3d[] { new Vec3d(tops[j]), new Vec3d(tops[k]),
 scaledK, scaledJ });
 88 scaledK = new Vec3d(bottoms[k]); scaledK.scale(.001);
 89 scaledJ = new Vec3d(bottoms[j]); scaledJ.scale(.001);
 90 bottom = new Facet(new Vec3d[] { new Vec3d(bottoms[j]), new
 Vec3d(bottoms[k]), scaledK, scaledJ });
 91
 92 front = new Facet(new Vec3d[] { new Vec3d(tops[j]), new Vec3d(tops[k]), new
 Vec3d(bottoms[k]), new Vec3d(bottoms[j]) });
 93

 88

 94 // technical note on right and left, these may actually be getting created
 reversed here (tbd test), however,
 95 // mediator makes time calculations that make it irrelevant, including ccw
 order
 96
 97 // note k for both
 98 scaledK = new Vec3d(tops[k]);
 99 scaledK.scale(.001);
100 scaledJ = new Vec3d(bottoms[k]);
101 scaledJ.scale(.001);
102 left = new Facet(new Vec3d[] { new Vec3d(tops[k]), new Vec3d(bottoms[k]),
 new Vec3d(scaledJ), new Vec3d(scaledK) });
103
104 // note j for both
105 scaledK = new Vec3d(tops[j]);
106 scaledK.scale(.001);
107 scaledJ = new Vec3d(bottoms[j]);
108 scaledJ.scale(.001);
109 right = new Facet(new Vec3d[] { new Vec3d(tops[j]), new Vec3d(bottoms[j]),
 new Vec3d(scaledJ), new Vec3d(scaledK) });
110
111 // back
112 Vec3d scaledTK = new Vec3d(tops[k]);
113 scaledTK.scale(.001);
114 Vec3d scaledTJ = new Vec3d(tops[j]);
115 scaledTJ.scale(.001);
116 scaledK = new Vec3d(bottoms[k]);
117 scaledK.scale(.001);
118 scaledJ = new Vec3d(bottoms[j]);
119 scaledJ.scale(.001);
120 back = new Facet(new Vec3d[] { scaledTK, scaledTJ, scaledJ, scaledK });
121
122
123 scanVolumes[j][i] = new
 QuadVolume(transform,top,bottom,front,back,left,right);
124 activeVolumes[j][i] = true;
125 }
126 }
127
128 return scanVolumes;
129 }
130
131 public Vector intercept(Vec3d point, Vec3d velocity) {
132 Vector v = new Vector();
133 for (int i = 0; i < 2; i ++) {
134 for (int j = 0; j < 8; j++) {
135 if (activeVolumes[j][i]) {
136 Vec4d[] intercepts = scanVolumes[j][i].intercept(point,velocity);
137 if (intercepts != null) {
138 v.add(intercepts);
139 }
140 }
141 }
142 }
143 return v;
144 }
145 }
146

 Now that a contact location strategy has been determined, it remains to integrate the

FOM of detection within the capture volume(s). There are a number of factors which can

contribute to the quality of a signal, such as ambient noise, frequency, initial energy, and Target

geometry.

 89

 In signal analysis it is customary to represent energy levels in terms of Decibels (dB), in

large part because perception of loudness is logarithmic for both biological and electro-

mechanical devices. Using the equations for sonar signaling as presented by Sonalyts, Inc., a

detection threshold can readily be implemented in terms of Diskit's Mover and Sensor dynamics.

 The principle behind the Sonalysts FOM equation is that overall signal integrity is

composed of several factors, and in terms of transcendental mathematics, logarithms add or

subtract as factors multiply and divide. This greatly simplifies quantitative results. So for

example one could say return on a signal is proportional to the inverse of the square of the

distance (and other factors), in terms of logs that becomes − 2log X (+/- other factors.)

 Once sufficient factors can be approximated, an overall summation of the signal in terms

of dB can be constructed, including the amount of raw signal required for an operator to

positively differentiate between noise and target reflection.

Let:
 SL = Signal Strength of Ping
 TL = Transmission Loss of signal spread, approximately 10 log(range) overall 20
 log(range) to account for the loss of the signal on its return.
 TS = Target Strength, a figure dependent upon shape, orientation, and c
 composition of the target
 NL = Noise Level of ambient sound
 DI = Directivity Index, noise filter capability of the sonar
 RD = Recognition Differential, can be operator skill level, or a.k.a. DT as
 Detection Threshold
 AT = Attenuation loss due to frequency of signal,
 2 2 2 2(12 /11)*(0.003 0.1 /(1) (40) /(4100) 0.000275)2f f f f+ + + + + f

Then:
if a detection event happens and conversely if < 0, an
UnDetection may happen if already detected.

2() () 0SL TL TS NL DI RD AT− + − − − − >

 90

Frequency Attenuation

3.5 kHz .22 dB/kyd (.24 dB/km)

10 kHz 1.08 dB/kyd (1.19 dB/km)

30 kHz 7.55 dB/kyd (8.31 dB/km)

60 kHz 19.79 dB/kyd (21.77 dB/km)

100 kHz 31.22 dB/kyd (34.34 dB/km)

Table 2. Table showing sample values of AT used for various frequencies of interest.

 Some of these factors can be considered constant inputs to the equation, such as SL or AT,

whereas other factors can have some randomness, such as RD (if say the operator was distracted)

or NL since noise levels are themselves “noisy”. The MultiLRATL Sonar model enables the

analyst to set variously shaped random variates for input parameters, so for example if RD of a

skilled operator is measured to be typically 10.0 dB, the operator may have a standard deviation

perhaps by 1.0 in a Normal Gaussian distribution. Similarly NL might be also 60 dB with a

standard deviation of 5.0 in a particular harbor.

 Perhaps the region has some areas that are noisier than others, and data are available at

regular intervals for noise levels, then a map can be constructed using Diskit's

InterpolatedXYVariate, which is a drop-in replacement for any abstract

simkit.random.RandomVariate parameter, incidentally using the above-mentioned Facet to

perform the interpolation.

 1 /*
 2 * InterpolatedXYVariate.java
 3 *
 4 * Created on July 9, 2006, 11:07 AM
 5 *
 6 * An M x N grid in X,Y, where
 7 * Xm = m * Dx/Dm + X0
 8 * Yn = n * Dy/Dn + Y0
 9 */
 10 package diskit;
 11
 12 import simkit.random.RandomVariateBase;
 13
 14 /**
 15 *
 16 * @author Rick Goldberg
 17 */
 18 public class InterpolatedXYVariate extends RandomVariateBase {
 19 public static double MAX_Z = 1000.0;
 20 double xScale; // Dx/Dm
 21 double xShift; // X0
 22 double yScale; // Dy/Dn
 23 double yShift; // Y0

 91

 24 Double[][] zValues; // zValues[y rows][x columns]
 25 double x,y; // sample point
 26 Facet quad;
 27
 28 /** Creates a new instance of InterpolatedXYVariate */
 29 public InterpolatedXYVariate() {
 30 setXScale(1.0);
 31 setXShift(0.0);
 32 setYScale(1.0);
 33 setYShift(0.0);
 34 setX(0.0);
 35 setY(0.0);
 36 // initially make a flat 2x2 of z values, generally by row[0], row[1] ... row[n]
 37 Object[] zGrid = new Object[] { new Double[] { new Double(0.0), new Double(0.0) } ,
 new Double[] { new Double(0.0), new Double(0.0) } };
 38 setParameters(zGrid);
 39 }
 40
 41 // x,y should be set each generate(), otherwise this behaves like a constant variate,
 42 // unless data was touched.
 43 public double generate() {
 44 int xI, xJ, yI, yJ; // index into zValues
 45 double x0 = x/xScale - xShift;
 46 double y0 = y/yScale - yShift;
 47
 48 // first xI, to be low x index, then xI+1 is hi
 49 xI = (int)x0;
 50 xJ = xI + 1;
 51
 52 // clamp to edge of map
 53
 54 if (xJ > zValues[0].length) {
 55 xJ = zValues[0].length;
 56 xI = xJ - 1;
 57 }
 58
 59 if (xI < 0) {
 60 xI = 0;
 61 xJ = 1;
 62 }
 63
 64 yI = (int)(y0);
 65 yJ = yI + 1;
 66
 67 if (yJ > zValues.length) {
 68 yJ = zValues.length;
 69 yI = yJ - 1;
 70 }
 71
 72 if (yJ < 0) {
 73 yJ = 1;
 74 yI = 0;
 75 }
 76
 77 Vec3d[] verts = new Vec3d[4];
 78 verts[0] = new Vec3d((double)xI, (double)yI, (zValues[yI][xI]).doubleValue());
 79 verts[1] = new Vec3d((double)xI, (double)yJ, (zValues[yJ][xI]).doubleValue());
 80 verts[2] = new Vec3d((double)xJ, (double)yJ, (zValues[yJ][xJ]).doubleValue());
 81 verts[3] = new Vec3d((double)xJ, (double)yI, (zValues[yI][xJ]).doubleValue());
 82
 83 // can carry out the interp in normalized space, same result as full x,y coords
 84 quad = new Facet(verts);
 85
 86 // using the 4d version don't really need a MAX_Z, can be backwards in 'time', but
 87 // preserving sense of +z down could also be used for terrain; orig. intent was for
 noise
 88 // intensity and other data however.
 89
 90 Vec4d intercept = quad.intercept(new Vec3d(x0,y0,-MAX_Z), new Vec3d(0.0,0.0,1.0));
 91 return intercept.get(2);
 92 }

 92

 93
 94 /* Parameters are object[N] = Double[M]
 95 * of Z values.
 96 */
 97 public void setParameters(Object[] object) {
 98 int N = object.length;
 99 for (int n = 0; n < N; n++) {
100 zValues[n] = (Double[])object[n];
101 }
102 }
103
104 /* returns actual data, not a copy
105 */
106 public Object[] getParameters() {
107 Object[] ret = new Object[zValues.length];
108 for (int n = 0; n < zValues.length; n ++) {
109 ret[n]=zValues[n];
110 }
111 return ret;
112 }
113
114 public void setYShift(double d) {
115 yShift=d;
116 }
117
118 public void setXShift(double d) {
119 xShift=d;
120 }
121
122 public void setXScale(double d) {
123 xScale=d;
124 }
125
126 public void setYScale(double d) {
127 yScale=d;
128 }
129
130 public void setX(double d) {
131 x=d;
132 }
133
134 public void setY(double d) {
135 y=d;
136 }
137 }

 A quote from (Urick 1986) and commentary courtesy Douglas Nelson, Sonalysts, Inc.:

No measurement work in the real ocean has been done in this frequency range,
except for the measurements of Anderson And Gruber at 30, 90 and 150 kHz in
the ports of San Diego, Long Beach in California, Balboa and Christobal in the
Pacific Canal Zone, and Norfolk, Virginia. These locations were found to be
extremely noisy and showed great variability from port to port. The average
levels in these ports was some 20 dB higher than the Knudsen extrapolated levels
for sea state 6. Surprisingly small differences were found between day and night;
the lower levels due to industrial activity during the night were evidently
compensated by higher noise due to snapping shrimp. Comparing the various
ports, there was a general tendency for the noise levels to increase with decreasing
latitude, as would be expected from greater abundance of shrimp in lower
latitudes.

 93

 From the Knudsen curves, we should expect average noise levels to be 66 dB at 30 kHz,

57 dB at 90 kHz, and 53 dB at 150 kHz. Going by Urick's comment on latitudes, we should

probably give Bremerton and Annapolis lower values and Pearl a higher value. Interesting

points are the small differences noted between day and night, and that wind/sea state related

noise is completely dominated by other sources.

These random factors generate discrete values each time they are sampled by a “Ping”

from the MultiLRATLSonar. The net result is they define a probability of detection that tapers off

at the furthest maximum range as denoted by the Mediator's detection sphere; consequently, a

Sensor should be initialized with its maximum range parameter calculated to be that where

factors such as NL or RD are at their best.

 There are now sufficient components to assemble a working model within Viskit. The

following shows the Event-Graph layout and generated code for the MultiLRATLSonar, at which

point it will be dropped into an existing SMAL-based sample scenario from the ATFP

BehaviorLibraries.

 94

Figure 19. CheckDetection Event Graph

 Once the CheckDetection event is heard from the Mediator, a number of Pings are

scheduled while the potential Target is sampled throughout its traversal of the SonarScan

volume. If the FOM > 0.0 a Detection occurs, otherwise UnDetection occurs if already detected.

 95

This event graph generates the following runnable code:

 1 package diskit;
 2
 3 import simkit.*;
 4 import simkit.random.*;
 5 import java.util.*;
 6
 7 public class MultiLRATLSonar extends diskit.SphereCutterSensor {
 8
 9 /* inherited parameter diskit.Mover3D mover */
 10 /* inherited parameter double maxRange */
 11 private double SL;
 12 private double DI;
 13 private simkit.random.RandomVariate RD;
 14 private diskit.SonarScan scans;
 15 private double pingInterval;
 16 private simkit.random.RandomVariate noise;
 17 private double frequency;
 18
 19 protected double TL;
 20 protected double TS;
 21 protected double DT;
 22 protected double NL;
 23 protected double AT;
 24 protected java.util.Hashtable detections = new java.util.Hashtable();
 25
 26 /** Creates a new instance of MultiLRATLSonar */
 27 public MultiLRATLSonar(diskit.Mover3D mover,
 28 double maxRange,
 29 double SL,
 30 double DI,
 31 simkit.random.RandomVariate RD,
 32 diskit.SonarScan scans,
 33 double pingInterval,
 34 simkit.random.RandomVariate noise,
 35 double frequency) {
 36
 37 super(mover,maxRange);
 38 setSL(SL);
 39 setDI(DI);
 40 setRD(RD);
 41 setScans(scans);
 42 setPingInterval(pingInterval);
 43 setNoise(noise);
 44 setFrequency(frequency);
 45 }
 46
 47 /** Set initial values of all state variables */
 48 public void reset() {
 49
 50 super.reset();
 51
 52 /** StateTransitions for the Run Event */
 53
 54 DT = RD.generate();
 55 }
 56
 57 public void doRun() {
 58 super.doRun();
 59 firePropertyChange("DT",DT);
 60 if (true) {
 61 waitDelay("RegisterSensor",0.0,new Object[]{this},0);
 62 }
 63
 64 }
 65

 96

 66 public void doCheckDetection(diskit.Mover3D contact) {
 67 diskit.Vec3d relativeLocation = (diskit.Vec3d)new
 diskit.Vec3d(contact.getLocation());
 68 relativeLocation.sub(getMover().getLocation());
 69 diskit.Vec3d relativeVelocity = (diskit.Vec3d)new
 diskit.Vec3d(contact.getVelocity());
 70 relativeVelocity.sub(getMover().getVelocity());
 71 java.util.Vector intercepts =
 (java.util.Vector)scans.intercept(relativeLocation,relativeVelocity);
 72
 73 /* Code insertion for Event CheckDetection */
 74 System.out.println(">>>>>>>Checking detection of "+contact);
 75 System.out.println(">>>>>>>Intercepts at "+intercepts+" length
 "+intercepts.size());
 76 /* End Code insertion */
 77 /* StateTransition for detections */
 78 java.util.Hashtable _old_Detections = getDetections();
 79 detections.put(contact, new Boolean(false));
 80 firePropertyChange("detections", _old_Detections, getDetections());
 81
 82
 83 if (intercepts.size() > 0) {
 84 waitDelay("ProcessIntercepts",0.0,new Object[]{intercepts,new
 Integer(0),contact},0);
 85 }
 86 }
 87
 88 public void doStartPings(diskit.Mover3D contact, diskit.Vec4d enterPoint,
 diskit.Vec4d exitPoint) {
 89 /* Code insertion for Event StartPings */
 90 System.out.println(">>>>>>>>Starting pings...");
 91 /* End Code insertion */
 92
 93 if (true) {
 94 waitDelay("Ping",0.0,new Object[]{contact},0);
 95 }
 96 }
 97
 98 public void doPing(diskit.Mover3D contact) {
 99 double range =
 (double)Vec3d.distance(getMover().getLocation(),contact.getLocation());
100 double fSq = (double)frequency*frequency;
101
102 /* Code insertion for Event Ping */
103 System.out.println(">>>>>>>>Ping to range "+range);
104 /* End Code insertion */
105 /* StateTransition for TL */
106 double _old_TL = getTL();
107 TL = 10 * Math.log(range);
108 firePropertyChange("TL", _old_TL, getTL());
109
110 /* StateTransition for DT */
111 double _old_DT = getDT();
112 DT = getRD().generate();
113 firePropertyChange("DT", _old_DT, getDT());
114
115 /* StateTransition for TS */
116 double _old_TS = getTS();
117 TS = -15.0;
118 firePropertyChange("TS", _old_TS, getTS());
119
120 /* StateTransition for NL */
121 double _old_NL = getNL();
122 NL = noise.generate();
123 firePropertyChange("NL", _old_NL, getNL());
124
125 /* StateTransition for AT */
126 double _old_AT = getAT();
127 AT = (range/1000.0) * (.003 + (.1*fSq/(1+fSq)) + (40.0*fSq/(4100.0 + fSq))
 + .000275*fSq) * 12.0/11.0;

 97

128 /* Code block for pre-transition */
129 System.out.println("SL: "+SL+" TL: "+TL+" TS: "+TS+" NL: "+NL+" DI "+DI+"
 DT: "+DT+" AT: "+AT+"\nSL-(2*TL)+TS-(NL-DI)-DT-AT = "+(SL-(2*TL) +TS-
 (NL-DI)-DT-AT));
130 firePropertyChange("AT", _old_AT, getAT());
131
132 if (true) {
133 waitDelay("Ping",getPingInterval(),new Object[]{contact},0);
134 }
135 if (((SL - (2 * TL) + TS - (NL - DI) - DT - AT) > 0.0) && (! (
 ((Boolean)(detections.get(contact))).booleanValue()))) {
136 waitDelay("Detection",0.0,new Object[]{contact},0);
137 }
138 if (((SL - (2 * TL) + TS - (NL - DI) - DT - AT) <= 0.0) && ((
 ((Boolean)(detections.get(contact))).booleanValue()))) {
139 waitDelay("UnDetection",0.0,new Object[]{contact},0);
140 }
141 }
142
143 public void doStopPings(diskit.Mover3D contact) {
144 /* Code insertion for Event StopPings */
145
146 /* End Code insertion */
147
148 if (true) {
149 interrupt("Ping",new Object[]{contact});
150 }
151 waitDelay("UnDetection",0.0,new Object[]{},0.0);
152 }
153
154 public void doDetection(diskit.Mover3D contact) {
155 /* Code insertion for Event Detection */
156 System.out.println("MultiLRATLSonar "+this+" Detected "+contact);
157 /* End Code insertion */
158 /* StateTransition for detections */
159 java.util.Hashtable _old_Detections = getDetections();
160 detections.put(contact,new Boolean(true));
161 firePropertyChange("detections", _old_Detections, getDetections());
162
163 }
164
165 public void doUnDetection(diskit.Mover3D contact) {
166 /* Code insertion for Event UnDetection */
167 System.out.println("UnDetection "+contact);
168 /* End Code insertion */
169 /* StateTransition for detections */
170 java.util.Hashtable _old_Detections = getDetections();
171 detections.put(contact,new Boolean(false));
172 firePropertyChange("detections", _old_Detections, getDetections());
173
174 }
175
176 public void doProcessIntercepts(java.util.Vector intercepts, int count,
 diskit.Mover3D contact) {
177 diskit.Vec4d[] intercept = (diskit.Vec4d[])(diskit.Vec4d[])
 (intercepts.get(count));
178
179 /* Code insertion for Event ProcessIntercepts */
180 System.out.println(">>>>>>>>>Intercept 0 "+intercept[0]);
181 System.out.println(">>>>>>>>>Intercept 1 "+intercept[1]);
182 /* End Code insertion */
183
184 if (count < intercepts.size() - 1) {
185 waitDelay("ProcessIntercepts",0.0,new Object[]{intercepts,new
 Integer(count+1),contact},0);
186 }
187 if (intercept[1].get(3) > 0.0) {
188 waitDelay("StopPings",intercept[1].get(3),new Object[]{contact},0);
189 }
190 if (intercept[1].get(3) > 0.0) {
191

 98

 waitDelay("StartPings",intercept[0].get(3)>0.0?intercept[0].get(3):0.0,new
 Object[]{contact,intercept[0],intercept[1]},0);
192 }
193 }
194
195 public void doRegisterSensor(diskit.Sensor sensor) {
196 /* Code insertion for Event RegisterSensor */
197
198 /* End Code insertion */
199
200 }
201
202 public void setSL(double SL) {
203 this.SL = SL;
204 }
205
206 public double getSL() {
207 return SL;
208 }
209
210 public void setDI(double DI) {
211 this.DI = DI;
212 }
213
214 public double getDI() {
215 return DI;
216 }
217
218 public void setRD(simkit.random.RandomVariate RD) {
219 this.RD = RD;
220 }
221
222 public simkit.random.RandomVariate getRD() {
223 return RD;
224 }
225
226 public void setScans(diskit.SonarScan scans) {
227 this.scans = scans;
228 }
229
230 public diskit.SonarScan getScans() {
231 return scans;
232 }
233
234 public void setPingInterval(double pingInterval) {
235 this.pingInterval = pingInterval;
236 }
237
238 public double getPingInterval() {
239 return pingInterval;
240 }
241
242 public void setNoise(simkit.random.RandomVariate noise) {
243 this.noise = noise;
244 }
245
246 public simkit.random.RandomVariate getNoise() {
247 return noise;
248 }
249
250 public void setFrequency(double frequency) {
251 this.frequency = frequency;
252 }
253
254 public double getFrequency() {
255 return frequency;
256 }
257
258 public double getTL() {
259 return TL;
260 }

 99

261
262
263 public double getTS() {
264 return TS;
265 }
266
267 public double getDT() {
268 return DT;
269 }
270
271 public double getNL() {
272 return NL;
273 }
274
275
276 public double getAT() {
277 return AT;
278 }
279
280 public java.util.Hashtable getDetections() {
281 return (java.util.Hashtable) detections.clone();
282 }
283
284 /* Inserted code for MultiLRATLSonar */
285 /*
286 Some Frequencies of interest
287 3.5 kHz : .22 db/kyd (.24 db/km)
288 10 kHz : 1.08 db/kyd (1.19 db/km)
289 30 kHz : 7.55 db/kyd (8.31 db/km)
290 60 kHz : 19.79 db/kyd (21.77 db/km)
291 100 kHz : 31.22 db/kyd (34.34 db/km)
292 */
293
294 public static double FREQ_3_5_Khz = 3.5000;
295 public static double FREQ_10_Khz = 10.0000;
296 public static double FREQ_30_Khz = 30.0000;
297 public static double FREQ_60_Khz = 60.0000;
298 public static double FREQ_100_Khz = 100.0000;
299 /* End inserted code */
300
301 }

 As can be seen from the above code, the Sensor derives its sense of location from a

Mover that it has been mounted on, and that it is irrelevant whether or not the mounting point is

stationary or moving.

 The following Viskit Assembly scenario, IndianIslandSonarTest, mounts an unmanned

MultiLRATLSonar to a stationary AmmoPier. Since manned SMAL entities use the abstract

Sensor, they easily mount with a MultiLRATLSonar and respond to obstacles and other objects in

the same way, however this example for simplicity is stationary and causes no response within

the scenario.

 100

Figure 20. Adding the MultiLRATLSonar as a drop in component.

 The scenario is now ready to run. Below shows a sample run of IndianIslandSonarTest

within Viskit's Assembly Runner. The output debug messages shown are ordinarily disabled,

but are demonstrative of the FOM determining Detection and UnDetection events, as entities

traverse the MultLRATLSonar's detection zone, and in particular, two such entities, one of which

momentarily becomes detectable.

 101

Figure 21. Debug Output from a Random Run of IndianIslandSonarTest in Viskit.

 102

APPENDIX F: PLANET 9 PRESENTATION SLIDESETS

F.1 INTRODUCTION

These presentations were originally give during the May M&S Workshop here at NPS by

Christian Greuel and David Colleen. They are reprinted here by permission of the Planet 9

Studios Art Team and are relevant to the processes required to building port and shore side

installation models.

 103

F.1 BUILDING GEO-REGISTERED X3D

 104

 105

 106

 107

 108

 109

 110

F.2 3D GEOSPATIAL DATA INTERFACES AND TOOLS

 111

 112

 113

 114

 115

 116

APPENDIX G: PHASE II TECHNICAL SUMMARY OF X3D MODEL
CONSTRUCTION

G.1 PLANET 9 STUDIOS ART TEAM

Overview
In February 2006, Planet 9 Studios received a scope of work (SOW) for Phase II of the

Modeling and 3D Visualization for Evaluation of Anti-Terrorism/Force Protection (AT/FP)

Alternatives. The major portion of the SOW included the development of Extensible 3D (X3D)

models of waterside buildings and underlying terrain at Pearl Harbor, Hawaii. This technical

summary documents important attributes of these models, including naming conventions and

hierarchical organization, which will be useful for understanding their structure and use.

Terrain
A geo-referenced X3D terrain model of Oahu was developed from 10-meter Spatial Data

Transfer Standard (SDTS) Digital Elevation Model (DEM) files. This source data, originating

from the U.S. Geological Survey (USGS), was obtained at no cost from the publicly available

GeoCommunity™ website (www.geocomm.com). A total of sixteen individual quads

comprising Honolulu County were required for complete coverage of the island. These quads

were Haleiwa, Hauula, Honolulu, Kaena, Kaena OE W, Kahana, Kahuku, Kaneohe, Koko Head,

Mokapu, Pearl Harbor, Scholfield Barracks, Waianae, Waimea, and Waipahu.

The individual quads were combined with Global Mapper software, a geographic data

viewer and format converter. The dataset was then re-projected into the Universal Transverse

Mercator (UTM) coordinate system with the following attributes:

Projection: UTM

Zone: 4

Datum: WGS84

Planar Units: Meters

 117

This projection has two basic benefits. First, UTM is defined within Cartesian XYZ

space, which is the same as that in which the 3D models are authored. Second, it uses meters as

its planar unit, which is the same unit of measure used by X3D.

The combined elevation model of Oahu, measuring 75x60 km, was exported as a single

DEM, re-sampled at a 500-meter resolution. The Pearl Harbor area (10x10 km), being the area of

interest, was exported separately at a higher resolution of 50-meters. These new DEMs were

imported into the 3D authoring tool, Autodesk 3dsmax, with the UTM coordinate (608354.00,

2362714.00, 0.00) being centered at its local XY origin (0, 0, 0). To the immediate area around

Pearl Harbor, topographic data was integrated into the greater terrain model for further

refinement.

The terrain models were each divided into separate sections along a regular grid. This

allows for efficient view frustum culling as well as the implementation of Level of Detail (LOD)

switching. The Oahu terrain was divided into a 5x4 grid, with each section measuring 15x15 km.

The higher-resolution Pearl Harbor terrain was divided into an octagonal 4x4 grid, with each

section measuring 2500x2500 meters. Each of these grid sections was then optimized by utilizing

a polygon reduction modifier, automatically substituting larger triangles for continuous areas of

the terrain mesh that were co-planar within an acceptable threshold.

Figure 22. Oahu and Pearl Harbor Terrain Grids Optimized

 118

Figure 23. Oahu and Pearl Harbor Terrains Drapped with Imagery

The Oahu terrain mesh was draped with color-corrected 30-meter Land Remote-Sensing

Satellite (LANDSAT) imagery. This higher-resolution Pearl Harbor area was draped with 1-

meter imagery originating from Space Imaging. This area included the Naval Station, Naval

Shipyard, SUBASE, FISC, and Ford Island facilities. The resulting geometry was then optimized

for real-time rendering, including the addition of Levels of Detail (LOD) for increased

efficiency, and geo-referenced within the Universal Transverse Mercator (UTM) coordinate

system as described in the X3D Geospatial specification.

Figure 24. Oahu and Pearl Harbor Terrain Grids Designated

 119

Given its low resolution, the entire Oahu terrain was able to be saved as a single X3D

file, complete with the exception of the inlined octagonal Pearl Harbor area (see below).

However, the Oahu terrain file does have five different versions, each named with a convention

of “Terrain*.x3d”, where “*” identifies which version(s) of the Pearl Harbor terrain are to be

inlined. Thus the file selected from one of the following five becomes the master terrain file:

Terrain.x3d Oahu terrain; inlines 16 Pearl Harbor sections under GeoLODs:

PearlHarborTerrain<col><row>High.x3d
PearlHarborTerrain<col><row>Low.x3d

TerrainHigh.x3d Oahu terrain; inlines 16 Pearl Harbor sections:
PearlHarborTerrain<col><row>High.x3d

TerrainMed.x3d Oahu terrain; inlines 16 Pearl Harbor sections:
PearlHarborTerrain<col><row>Med.x3d

TerrainLowPiers.x3d Oahu terrain; inlines 16 Pearl Harbor sections:
PearlHarborTerrain<col><row>LowPiers.x3d

TerrainLow.x3d Oahu terrain; inlines 16 Pearl Harbor sections:
PearlHarborTerrain<col><row>Low.x3d

Table 3. Various Resolution Version of the Oahu Terrain

Within each version of the “Terrain*.x3d” files are two Group nodes. The group

“OahuTerrain” contains each of the twenty grid sections of the greater Oahu terrain. Each grid

section is individually named with a convention of “gnd_Oahu<col><row>”, where “gnd_”

identifies the object as ground, “<col>” is a grid column letter from A-E starting from the left,

and “<row>” is a grid row number from 1-4 starting from the top. Thus, the individual grid

sections of Oahu are named as follow:

gnd_OahuA1 gnd_OahuB1 gnd_OahuC1 gnd_OahuD1 gnd_OahuE1

gnd_OahuA2 gnd_OahuB2 gnd_OahuC2 gnd_OahuD2 gnd_OahuE2

gnd_OahuA3 gnd_OahuB3 gnd_OahuC3 gnd_OahuD3 gnd_OahuE3

gnd_OahuA4 gnd_OahuB4 gnd_OahuC4 gnd_OahuD4 gnd_OahuE4

Table 4. Individual Grid Sections of the Oahu Terrain

Under the second group, “PearlHarborTerrain”, each of the external Pearl Harbor

terrain grid section files is called. This is done via the X3D “GeoLOD” node, thereby allowing for

LOD switching if desired.

 120

The sixteen Pearl Harbor grid sections were each saved as individual X3D files named

with a convention of “PearlHarborTerrain<col><row>*.x3d”, where “<col>” is a grid

column letter from A-D starting from the left, “<row>” is a grid row number from 1-4 starting

from the top, and “*” identifies the resolution of the terrain imagery. Note that the resolution

component of these file names correspond to those of the master “Terrain*.x3d” files, which

call them (see above). Example file names for the single Pearl Harbor grid section “A1” are as

follow:

PearlHarborTerrainA1High.x3d Pearl Harbor section A1, with High-Res 2048x2048

Terrain imagery. Includes Pier geometry.
PearlHarborTerrainA1Med.x3d Pearl Harbor section A1, with Medium-Res

1024x1024 Terrain imagery. Includes Pier geometry.
PearlHarborTerrainA1LowPiers.x3d Pearl Harbor section A1, with Low-Res 512x512

Terrain imagery. Includes Pier geometry.
PearlHarborTerrainA1Low.x3d Pearl Harbor section A1, with Low-Res 512x512

Terrain imagery. DOES NOT include Pier geometry.

Table 5. Example File Names for the Single Pearl Harbor Grid Section A1

Each Pearl Harbor terrain grid section has four different LOD resolutions. These are

differentiated not by geometry, but rather by the resolution of the texture map applied to each.

The high resolution texture maps are each 2048x2048 pixels in size. The medium resolution

texture maps are 1024x1024 pixels in size. The low resolution texture maps are 512x512 pixels

in size. The one case of reduced geometric resolution is in those sections named

“PearlHarborTerrain<col><row>Low.x3d”, in which the piers have been removed for

increased performance when needed.

The texture maps for the terrain files are located in subdirectories of the Textures

directory. The three numbered subdirectories contain the texture maps for the section grids of the

various terrain resolutions: High (2048), Medium (1024), and Low (0512). Note the use of the

leading zero for the three-digit number. The Oahu subdirectory contains the texture maps for the

section grids of the greater Oahu terrain. Finally, the Wharfs subdirectory contains texture maps

for the various piers and wharfs.

 121

Buildings
Atop the terrain were constructed geo-referenced X3D models of the majority of Navy

buildings visible from the water, as well as piers and wharves attached to the facilities. The piers

and wharves are part of the terrain files (see above). The location and footprint of each structure

was extracted from the provided computer-aided drafting (CAD) files, which had been manually

rectified to the geo-referenced terrain. The footprints were then extruded and the resulting

geometry modified to create a representational 3D model of each structure. To these were

applied texture maps which were derived from the location photographs, thereby resulting in a

photo-realistic model for use in the AT/FP simulation software.

Figure 25. Pearl Harbor Buildings Grouped into Five Separate Files Determined by Location.

For ease of management, the buildings were grouped into five separate files determined

by their location. These areas are Ford Island, Ford Island Bridge, Naval Shipyard, Naval Station

(comprised of NAVSTA, SUBASE, and FISC), and Extra Buildings (outlying area amongst and

beyond the lochs). Furthermore, each of these five files is available with two different resolutions

of texture maps applied. The high resolution version is identified simply as the name of the

 122

location (e.g. FordIsland.x3d). The low resolution version appends the word “Low” to the file

base name (e.g. FordIslandLow.x3d)

In turn, the appropriate resolution of these five location files is called by one of five

master building files. These go by the naming convention of “Building*.x3d”, where “*”

identifies which version of the building locations are to be inlined. Additionally, the master

building file will also call one of the previously discussed master terrain files. Thus the file

selected from one of the following five becomes the overall master file.

Buildings.x3d High-Res Building files inlined; Terrain inlined via:

Terrain.x3d
BuildingsHigh.x3d High-Res Building files inlined; Terrain inlined via:

TerrainHigh.x3d
BuildingsMed.x3d High-Res Building files inlined; Terrain inlined via:

TerrainMed.x3d
BuildingsLowPiers.x3d Low-Res Building files inlined; Terrain inlined via:

TerrainLowPiers.x3d
BuildingsLow.x3d Low-Res Building files inlined; Terrain inlined via:

TerrainLow.x3d

Within each location file (e.g. FordIsland.x3d) reside the individual building models.

Each building is situated underneath its own Transform node. Whenever possible, this Transform

node is named for its designated building number as identified on the provided CAD drawings.

The naming convention for the buildings then becomes “bld_<num>”, where “bld_” identifies

the object as a building, and “<num>” is the designated number of the building. In cases where a

building number was not to be found in the CAD drawings, a unique number was assigned to it.

Furthermore, clusters of buildings in close proximity to each other are grouped together

as blocks for more efficient scene culling. It should be noted that these block groupings are not

officially recognized blocks, but rather chosen with spatial considerations for best performance.

The naming convention for the blocks is “blk_<num>”, where “blk_” identifies the grouping as a

block, and “<num>” is a unique number assigned to the block.

The texture maps for the building files are located in subdirectories of the Textures

directory. First, they are segregated into either the High or Low subdirectory. Below this there

are subdirectories for each of the building locations. In general, the texture maps in the Low

subdirectories are 50% of the pixel size of those in the High subdirectories.

 123

[Locations]
|-- [PearlHarborBuildings]
 |-- Buildings.x3d <-- OVERALL MASTER FILE
 |-- FordIsland.x3d
 | |-- [Maps]
 | |-- [High]
 | |-- [FordIsland]
 |-- FordIslandBridge.x3d
 | |-- [Maps]
 | |-- [High]
 | |-- [FordIslandBridge]
 |-- NavalShipyard.x3d

 | |-- [Maps]
 | |-- [High]
 | |-- [NavalShipyard]
 |-- NavalStation.x3d
 | |-- [Maps]
 | |-- [High]
 | |-- [NavalStation]
 |-- ExtraBuildings.x3d
 | |-- [Maps]
 | |-- [High]
 | |-- [ExtraBuildings]
 |
 [../PearlHarborTerrain]
 |-- Terrain. x3d <-- MASTER TERRAIN FILE
 |-- PearlHarborTerrainA1High.x3d
 | |-- [Maps]
 | |-- [2048]
 |-- PearlHarborTerrainA1Low.x3d
 | |-- [Maps]
 | |-- [0512]
 |-- ...
 |-- PearlHarborTerrainD4High.x3d
 | |-- [Maps]
 | |-- [2048]
 |-- PearlHarborTerrainD4Low.x3d
 | |-- [Maps]
 | |-- [0512]
 |-- [Oahu]
 |-- [Wharfs]

Figure 26. Example Building/Terrain File Dependency Chart

 124

Aids to Navigation
A series of Aids to Navigation (ATON) X3D PROTO and X3D (non-PROTO) models

was produced to allow the virtual waterways to be populated with charted marks as they are in

the actual world. Each ATON model can be positioned and oriented at precise locations within a

given scene. The selection includes the following models:

• Danger Daybeacon (non-PROTO)

• Daybeacon

• Light

• Lighted Buoy

• Light Post

• Marker Buoy (non-PROTO)

• Mooring Buoy (non-PROTO)

• Range Light

The ATON X3D PROTO models contain switches to allow assignment of a few specific

attributes such as port (green) vs. starboard (red), light on vs. light off, and brightness of light

glow. These attributes are based upon International Hydrographic Organization (IHO) S-57

(http://www.caris.com/s-57). This standard, prepared by the IHO Committee on

Hydrographic Requirements for Information Systems (CHRIS), is for the coding and exchange

of hydrographic digital data.

While only a few attributes are currently available, a comprehensive system of ATON

X3D PROTO models with attributes adherent to S-57 is the subject of a future scope of work.

These would include defined options such as numeric designation, types of sounds, and precise

light flashing characteristics. The system would also include a more complete selection of ATON

types (e.g. Cans/Nuns, Mileboards, Warning Markers, etc.)

 125

Following is a list of the ATON X3D PROTO models that currently exist, along with

their available attributes and options:

RangeLightPrototype.x3d

Attribute Default Option
LightType 1 0=LightOff,

1=LightOn,
2=LightFlashing(NotImplemented)

LightGlow 1 1 1 XYZ Scale of Light Glow Effect

Table 6. Aids to Navigation X3D Proto Models - RangeLight

NOTE: Range Light model points due North (-Z) and its light glow effect is only visible

from that direction. The Range Light should be rotated into its proper orientation.

DaybeaconPrototype.x3d

Attribute Default Option
Catlam*

*Category of
Lateral Marker

1

0=None(Unlikely),
1=PortHand(GreenSquare),
2=StarboardHand(RedTriangle),
3=PreferredChannelToStarboard(TopmostBandGreen),
4=PreferredChannelToPort(TopmostBandRed)

Number N/A Not Implemented

Table 7. Aids to Navigation X3D Proto Models – Daybeacon

 126

LightPrototype.x3d

Attribute Default Option
Catlam*

*Category of
Lateral Marker

1

0=None(Unlikely),

1=PortHand(GreenSquare),

2=StarboardHand(RedTriangle),

3=PreferredChannelToStarboard(TopmostBandGreen),

4=PreferredChannelToPort(TopmostBandRed)

LightType 1 0=LightOff,
1=LightOn,
2=LightFlashing(NotImplemented)

LightGlow 1 1 1 XYZ Scale of Light Glow Effect
PileType 1 0=NoPile(Unlikely),

1=SinglePile,

2=MultiPile

Number N/A Not Implemented

Table 8. Aids to Navigation X3D Proto Models – LightPrototype

LightedBuoyPrototype.x3d

Attribute Default Option
Catlam*

*Category of
Lateral Marker

1

0=None(Unlikely),
1=PortHand(GreenSquare),
2=StarboardHand(RedTriangle),
3=PreferredChannelToStarboard(TopmostBandGreen),
4=PreferredChannelToPort(TopmostBandRed)

LightType 1 0=LightOff,
1=LightOn,
2=LightFlashing(NotImplemented)

LightGlow 1 1 1 XYZ Scale of Light Glow Effect
Number N/A Not Implemented

Table 9. Aids to Navigation X3D Proto Models – LightedBouyPrototype

LightPostPrototype.x3d

Attribute Default Option
LightType 1 0=LightOff,

1=LightOn,
2=LightFlashing(NotImplemented)

LightGlow 1 1 1 XYZ Scale of Light Glow Effect

Table 10. Aids to Navigation X3D Proto Models – LightPostPrototype

 127

EXTERNPROTO RangeLight [
 exposedField SFInt32 LightType
 exposedField SFVec3f LightGlow

]
"RangeLightPrototype.wrl#RangeLight"

EXTERNPROTO Light [
 exposedField SFInt32 Catlam
 exposedField SFInt32 LightType
 exposedField SFVec3f LightGlow
 exposedField SFInt32 PileType
 exposedField SFInt32 Number
]
"LightPrototype.wrl#Light"

DEF RangeLightFront Transform {
 translation 0 0 -25
 rotation 0 1 0 3.14159 # Rotate to face South
 children [

 RangeLight {
 LightType 1 # Light On
 LightGlow 4 4 1 # Glow effect scaled 4x wide (XY only)
 }
]
}

DEF LightPort Transform {
 translation -10 0 25
 children [
 Light {
 Catlam 1 # Green (Port)
 LightType 1 # Light On
 LightGlow 2 2 2 # Glow effect scaled two times (XYZ)
 PileType 1 # Single Pile
 }
]
}

DEF LightStarboard Transform {
 translation 10 0 25
 children [
 Light {
 Catlam 2 # Red (Starboard)
 LightType 1 # Light On
 LightGlow 2 2 2 # Glow effect scaled two times (XYZ)
 PileType 2 # Multi Pile
 }
]
}

Figure 27. Example ATON X3D Code (VRML Syntax) with One Range Light and Two Lights

 128

Figure 28. Example ATON X3D Scene with One Range Light (in distance) and Two Lights

Compass Rose
Planet 9 Studios was asked create a 2D Compass Rose X3D PROTO for general direction

finding, to be displayed in a Heads-Up Display (HUD) manner over any given X3D scene. The

resulting model consists of a texture mapped compass face which rotates in direct correlation

with the orientation of the user’s viewpoint.

While the visual components were complete with basic functionality in place, the file was

not finished as of the final report. There remained an issue of gimbal lock in the compass

rotation, due to the fact that it was tied to the viewpoint orientation via the X3D

“ProximitySensor” node. The visual artifact is not noticeable when the viewpoint is parallel to

the ground, but becomes apparent when viewpoint is pitched up or down. It has been suggested

that a quaternion approach may need to be implemented in order to alleviate this issue. This has

been documented as XMSF Issue Tracker Bug #1009.

 129

The Compass Rose X3D PROTO includes two attributes which may be assigned values.

The first is the location offset, which defines the position of the compass face relative to the

center of the user’s screen. The second attribute is the size, which is the XYZ scaling of the

compass face default dimensions.

CompassRosePrototype.x3d

Attribute Default Option
locationOffset 0 0 0 XYZ Modified screen location
size 1 1 1 XYZ Modified compass size

Table 11. Compass Rose X3D PROTO Attributes and Options

EXTERNPROTO CompassRose [
 field SFVec3f locationOffset
 field SFVec3f size
]
"CompassRosePrototype.x3d"

Inline {
 url "CheckeredGround.x3d"
}

CompassRose {
 locationOffset -0.075 -0.045 0
 size 1 1 1
}

Figure 29. Example Compass Rose X3D Code (VRML Syntax)

Figure 30. X3D Example Compass Rose Scene First Looking North, then Northwest

 130

Port Security Barrier
Planet 9 Studios provided a copy of its previously existing Port Security Barrier (PSB)

X3D PROTO of the for release into the open source FOUO SavageDefense archive, thereby

allowing it to be freely used and modified accordingly.

This X3D PROTO defines a single section of a Port Security Barrier. A complete barrier

system is created by stringing several PSB sections together in a continuous line. In most cases,

one PSB section will be coupled to the next section via a normal hardware connection. However,

in cases where the PSB section must be connected to a special float, as in the case of a gate

opening, then it must have a special connector. The X3D PROTO allows the option to choose

such a connector, either on the left or right side of the section, via the attribute “whichChoice”.

Other attributes include “translation” and “rotation”. These two attributes are not

truly necessary, of course, as a transform could just as easily be applied to the X3D node from

which the PROTO is called. Note that each PSB section is 15.3 meters in length, and so this

would be the standard translation offset when there is a straight line of these running along a

primary axis (see example code below).

The PSB model contains four levels of detail (LODs). The highest LOD consists of 2134

polygons, while the lowest is made up of only 60 polygons. Depending on the number of PSB

sections included in a given scene, the “range” field of the X3D “LOD” node may need to be

adjusted within the X3D PROTO code to enable the higher LODs to switch out sooner. In this

way, the overall performance may be increased.

PortSecurityBarrierPrototype.x3d

Attribute Default Option
translation 0 0 0 XYZ Modified position of barrier section
rotation 0 1 0 0 Modified rotation of barrier section,

in vector (XYZ) and rotation (radians)
whichChoice 0 0=Normal,

1=LeftConnector,
2=RightConnector

Table 12. Port Security Barrier X3D PROTO attributes and options:

 131

EXTERNPROTO Barrier [
 exposedField SFVec3f translation
 exposedField SFRotation rotation
 exposedField SFInt32 whichChoice
]
"PortSecurityBarrierPrototype.x3d"

Barrier {
normal barrier section, i.e. it only connects to other barriers.
 whichChoice 0
 translation 0 0 0
}
Barrier {
special barrier section with connection hardware on its left side.
 whichChoice 1
 translation -15.3 0 0
}
Barrier {
special barrier section with connection hardware on its right side.
 whichChoice 2
 translation 15.3 0 0
}

Figure 31. Example PSB X3D Code (VRML Syntax)

Figure 32. X3D Example PSB Scene First with One Section, then Three Sections.

 132

X3D Model Locations

Terrain:

https://savagedefense.nps.navy.mil/SavageDefense/Locations/PearlHarborTerrain/index.html

Buildings:

https://savagedefense.nps.navy.mil/SavageDefense/Locations/PearlHarborBuildings/index.html

Aids to Navigation:

https://savage.nps.edu/Savage/HarborEquipment/NavigationAids/index.html

Compass Rose:

https://savage.nps.edu/Savage/Tools/HeadsUpDisplays/index.html

Port Security Barriers:

https://savagedefense.nps.navy.mil/SavageDefense/HarborEquipment/FloatingBarriers/index.html

Planet 9 Studios AT/FP Art Team

David Colleen, CEO

Christian Greuel, Director of Art & Production

Danny Lee, 3D Artist

Carlos Newcomb, 3D Artist

Ken Rhee, 3D Artist

 133

THIS PAGE INTENTIONALLY LEFT BLANK

 134

GLOSSARY OF TERMS AND ACRONYMS

2D Two Dimensional

3D Three Dimensional

ABOT Al-Basrah Oil Terminal

ACTD Advanced Concept Technology Demonstration

API Application Program Interface

ARES Applied Research and Engineering Sciences

ATD Atmospheric Transport and Dispersion

AT/FP Anti-Terrorism/Force Protection

ATON Aids to Navigation

AUV Autonomous Unmanned Vehicle

AVERT Automated Vulnerability Evaluation for Risks of Terrorism

BAA Broad Agency Announcement

C2 Command and Control

C4I Command, Control, Communications, Computers, and Intelligence

CAC Common Access Card

CAD Computer Aided Design

CASS Comprehensive Acoustic Simulation System

CAW Center for Asymmetric Warfare

C-BML Coalition Battle Management Language

CCRTS Command and Control Research and Technology Symposium

CEO Chief Executive Officer

CFFC Commander, Fleet Forces Command

CFO Chief Financial Officer

 135

CHDS Center for Homeland Defense and Security

CHRIS IHO Committee on Hydrographic Requirements for Information

 Systems

CNI Commander, Navy Installations

CNIC Commander, Navy Installations Command

CNO Chief of Naval Operations

CONOPS Concept of Operations

CONUS Continental United States

CVS Concurrent Versioning System

DARPA Defense Advanced Research Projects Agency

DARWARS DARPA-funded program for achieving training superiority

DEM Digital Elevation Model

DES Discrete Event Simulation

DHS Department of Homeland Security

DIS Distributed Interactive Simulation

DMSO Defense Modeling and Simulation Office

DNC Digital Nautical Chart
DoD Department of Defense

DOE Design of Experiments

DTED Digital Terrain Elevation Data

EHSS Electronic Harbor Security System

EPiCS Emergency Preparedness Incident Command Simulation

EO Electro-optical

EOD Explosive Ordnance Disposal

 136

ERDC Engineer Research and Development Center

ESRI Environmental Systems Research Institute

FAQ Frequently Asked Questions

FIRST Financial Institution Risk Strategy Tool

FISC Fleet Industrial Supply Center

FOM Figure of Merit

FOUO FOR OFFICIAL USE ONLY

GIG Global Information Grid

GIS Geographic Information System

GOPLATS Gas and Oil Platforms

GPS Global Positioning System

GUI Graphical User Interface

HiRSA High-Resolution Situational Awareness

HLA High Level Architecture

HPC High Performance Computing

HUD Heads up Display

HSDL Homeland Security Digital Library

IEEE Institute for Electronic and Electrical Engineers

IHO International Hydrographic Organization

I/ITSEC Interservice/Industry Training, Simulation, and Education

 Conference

Inc. Incorporated

IR Infra-red

IT/21 Information Technology for the 21st Century

 137

JCATS Joint Conflict and Tactical Simulation

JMBL Joint METOC Broker Language

ICA Independent Computing Architecture

ISO International Standards Organization

LANDSAT Land Remote-Sensing Satellite

LIDAR Light Detection and Ranging

LOD Level of Detail

LT Lieutenant

M&S Modeling and Simulation

MCAS Marine Corps Air Station

METOC Meteorological and Oceanographic Center

MIL-STD Military Standard

MOE Measure of Effectiveness

MOP Measure of Performance

MOVES Modeling, Virtual Environments, and Simulation

MSDL Military Scenario Definition Language

NAS Naval Air Station

NASA National Aeronautics and Space Administration

NATO North Atlantic Treaty Organization

NAVFAC Naval Facilities Command

NAVMAG Naval Magazine

NAVSEA Naval Sea Systems Command

NAVSTA Naval Station

NFESC Naval Facilities Engineering Service Center

 138

NMCI Navy-Marine Corps Internet

NOAA National Oceanic and Atmospheric Administration

NPS Naval Postgraduate School

NSWC Naval Surface Weapons Center

NUWC Naval Undersea Warfare Center

OCONUS Outside Continental United States

ODE Open Dynamics Engine

OPNAV Office of the Chief of Naval Operations

ONR Office of Naval Research

OR Operations Research

PDA Personal Digital Assistant

PDU Protocol Data Unit

PEO Program Executive Office

Ph.D. Doctor of Philosophy

Pkill Probability of Kill

PMS Program Manager Surface

POA&M Plan of Actions and Milestones

POC Point of Contact

PSB Port Security Barrier

R&D Research and Development

RFID Radio Frequency Identification

RHIB Rigid Hull Inflatable Boat

RSIMS Regional Shore Installation Management System

RTI Run-Time Infrastructure

 139

S&ST Sound and Sea Technologies

SAIC Science Applications International Corporation

SAVAGE Scenario Authoring and Visualization for Advanced Graphical

 Environments

SBIR Small Business Innovative Research

SDTS Spatial Data Transfer System

SecForDMT Security Forces Distributed Mission Training

SEDRIS Synthetic Environment Data Representation Interchange Standard

SIPRNET Secret Internet Protocol Router Network

SISO Simulation Interoperability Standards Organization

SIW Simulation Interoperability Workshop

SCORM Shareable Content Object Reference Model

SMAL Savage Modeling and Analysis Language

SOP Standard Operating Procedures

SOW Statement of Work

SPAWAR Space and Naval Warfare Command

SQL Standard Query Language

STRATA Synthetic Teammates for Realtime Anywhere Training and

 Assessment

STRI Simulation, Training, and Range Instrumentation

SUBASE Submarine Base

SWAT Special Weapons and Tactics

TENA Test and Training Enabling Architecture

TRAC TRADOC Analysis Center

TRADOC Training and Doctrine Command

 140

UI User Interface

UML Unified Modeling Language

UNO University of Nebraska, Omaha

URL Uniform Resource Locator

USGS United States Geological Survey

USN United States Navy

UTM Universal Transverse Mercator

VC Visual C++

V&V Verification and Validation

VR Virtual Reality

VRML VR Modeling Language

VV&A Verification, Validation, and Accreditation

WEAVER Web-Enabled Architecture for Visualization, Evaluation and

 Research

WSMR White Sands Missile Range

WSS Waterside Security

X3D Extensible 3D Graphics

Xj3D Extensible Java™ API for X3D

XML Extensible Markup Language

XMSF Extensible Modeling and Simulation Framework

XSBC XML Schema-based Binary Compression

XTC XML-based Tactical Chat

ZLIB An Open Source Compression Library

 141

THIS PAGE INTENTIONALLY LEFT BLANK

 142

REFERENCES

“Building High Resolution City Models... Evolving Standards”, David Colleen, Christian Greuel,
 Charles Newcomb, Danny Lee; Planet 9 Studios; IMAGE 2005 Conference; July 2005;
 http://www.web3d2006.org/slides/Digital_Cities_whitepaper_P9.pdf

“CARIS S-57 ENC Object Catalogue, Edition 3.1;” http://www.caris.com/s-57

“Modeling and 3D Visualization for Evaluation of Anti-Terrorism/Force Protection Alternatives
 Phase I Statement of Work,” Naval Facilities Engineering Service Center tasking to the
 Naval Postgraduate School, August 2005.

“Modeling and 3D Visualization for Evaluation of Anti-Terrorism/Force Protection Alternatives
 Phase II Statement of Work,” Naval Facilities Engineering Service Center tasking to the
 Naval Postgraduate School, March 2006.

Blais, C., Brutzman, D., Drake, D., Moen, D., Morse, K., Pullen, M., and Tolk, A., “Extensible
 Modeling and Simulation Framework (XMSF) 2004 Project Summary Report,” Technical
 Report NPS-MV-05-002, Naval Postgraduate School, Monterey, California, 28 February
 2005. Retrieved October 2006 from:
http://library.nps.navy.mil/uhtbin/cgisirsi/Tue+Oct+10+22:51:44+PDT+2006/SIRSI/0/520/NPS-
MV-05-002.pdf

Brutzman, D., M. Zyda, J.M. Pullen, and K.L. Morse, “Extensible Modeling and Simulation
 Framework (XMSF): Challenges for Web-Based Modeling and Simulation,” Naval
 Postgraduate School, October 2002. Retrieved October 2006 from:
 http://www.movesinstitute.org/xmsf/XmsfWorkshopSymposiumReportOctober2002.pdf

Brutzman, D., Buss, A., and Blais, C., “Connecting Simkit Discrete Event Simulation (DES) and
 the Naval Simulation System (NSS) via Web Services for Extensible Modeling & Simulation
 (XMSF)-Capable Analysis,” Naval Postgraduate School, 27 September 2004. Retrieved
 October 2006 from: http://terra.cs.nps.navy.mil/www.movesinstitute.org/n81.pdf

Brutzman, D. P., Blais, C. L., and Norbraten, T. D., “Naval Installation Security Modeling and
 Simulation Workshop Summary Report,” Technical Report NPS-MV-06-001, Naval
 Postgraduate School, Monterey, CA, 12 May 2006. Designated For Official Use Only
 (FOUO). Available on CD-ROM to U.S. Government Agencies and their Contractors. See
 Appendix D.

Buss, Arnold H. and Paul Sanchez, “Simple Movement and Detection in Discrete Event
 Simulation,” Proceedings of the 2005 Winter Simulation Conference, M. E. Kuhl, N. M.
 Steiger, F. B. Armstrong, and J. A. Joines, eds.

 143

Cioppa, T. M., “Efficient Nearly Orthogonal and Space-Filling Experimental Designs for High-
 Dimensional Complex Models,” Ph.D. Dissertation, Naval Postgraduate School, Monterey,
 CA, September 2002. Retrieved October 2006 from:
 http://theses.nps.navy.mil/02sep_Cioppa_PhD.pdf

Garrood, D., “Review of Current Modeling and Simulation Software within the Department of
 Defense Community,” Sound and Sea Technology, February 10, 2006.

Garrood, D., Meggitt, D. and Wilson, J., “Feasibility Report of Modeling and Simulation
 Software for Anti-Terrorist/Force Protection Ashore Harbor Vulnerability Assessment,”
 January 20, 2006.

Harney, J. W., “Analyzing Anti-Terrorist Tactical Effectiveness of Picket Boats for Force
 Protection of Navy Ships Using X3D Graphics and Agent-Based simulation,” Master’s
 Thesis, Naval Postgraduate School, Monterey CA, March 2003. Retrieved October 2006
 from: http://theses.nps.navy.mil/03Mar_Harney.pdf

Homeland Security Affairs is the online journal of the Center for Homeland Defense and Security
 (http://www.chds.us) at the Naval Postgraduate School and is a peer-reviewed journal
 providing a forum to propose and debate strategies, policies, and organizational arrangements
 to strengthen U.S. Homeland Security. See http://www.hsaj.org/hsa.

Homeland Security Digital Library (HSDL) is a collection of homeland security policy and
 strategy related documents. See https://www.hsdl.org.

“Light List, Vol. 6, Pacific Coast and Pacific Islands”; United States Coast Guard; July 2006;
 http://www.navcen.uscg.gov/pubs/LightLists/V6COMPLETE.PDF

Rauch, T. M., “Savage Modeling and Analysis Language (SMAL): Metadata for Tactical
 Simulations and X3D Visualizations,” Master’s Thesis, Naval Postgraduate School,
 Monterey, CA, March 2006. Retrieved October 2006 from:
 http://theses.nps.navy.mil/06Mar_Rauch.pdf

Sullivan, P. J., “Evaluating the Effectiveness of Waterside Security Alternatives for Force
 Protection of Navy Ships and Installations Using X3D Graphics and Agent-Based
 Simulation,” Master’s Thesis, Naval Postgraduate School, Monterey, CA, September 2006.
 Retrieved October 2006 from: http://theses.nps.navy.mil/06Sep_Sullivan.pdf

Urick, R. J., Ambient Noise in the Sea. Los Altos, CA: Peninsula Publishing, 1986, p.p. 2-28.

 “X3D Scene Authoring Hints”; Don Brutzman, Web3D Consortium;
 http://www.web3d.org/x3d/content/examples/X3dSceneAuthoringHints.html

 144

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. President
Naval Postgraduate School
Monterey, CA

4. Provost

Naval Postgraduate School
Monterey, CA

5. Platt Brabner
21st Century Systems, Inc.
Omaha, NE

6. Doug Kozal

21st Century Systems, Inc.
Omaha, NE

7. Rick Goldberg
Aniviza, Inc.
Los Gatos, CA

8. Steve Kunkle

ARES Corporation
Arlington, VA

9. Chris Guryan

ARES Corporation
Arlington, VA

10. David Garvey
 Boeing Phantom Works

Seal Beach, CA

11. Elizabeth Morin
Booz-Allen
McLean, VA

 145

12. Joyce Borgen
Center for Asymmetric Warfare
Point Mugu, CA

13. Michael Ayling

Commander, Naval Installations Command
Anacostia Annex, DC

14. Doug Backes

Commander United States Pacific Fleet
Pearl Harbor, HI

15. CDR John E. Iman, USN

Commander United States Pacific Fleet
Pearl Harbor, HI

16. Doris Turnage

Engineer Research and Development Center (HQ)
Vicksburg, MI

17. J. D. Miller
John Hopkins University – Applied Physics Laboratory
Laurel, MD

18. Doug Weihnacht
Kinection

 Santa Cruz, CA

19. Pete Swan
MAK Technologies
Cambridge, MA

20. Chris Carlson
Metron, Inc.
Reston, VA

21. Ray Jakobovits
Metron, Inc.
Reston, VA

22. Jeff Debrine

OPNAV N81
Washington, DC

 146

23. Milon Essoglou
Naval Facilities Engineering Command (HQ)
Washington, DC

24. LT Norlando Antonio, USN
Naval Station Pearl Harbor
Pearl Harbor, HI

25. Robert Taylor

Naval Facilities Engineering Service Center
Port Hueneme, CA

26. Alexandria DeVisser
Naval Facilities Engineering Service Center
Port Hueneme, CA

27. Dr. Leonard Ferrari
Naval Postgraduate School
Monterey, CA

28. Dr. Paul Stockton
Naval Postgraduate School
Monterey, CA

29. Dr. Peter Purdue
Naval Postgraduate School
Monterey, CA

30. Prof. Dan Boger
Naval Postgraduate School
Monterey, CA

31. Prof. Rudy Darken
Naval Postgraduate School
Monterey, CA

32. Prof. Don Brutzman
Naval Postgraduate School
Monterey, CA

33. Curt Blais

Naval Postgraduate School
Monterey, CA

 147

34. Jeff Weekley
Naval Postgraduate School
Monterey, CA

35. Terry Norbraten
Naval Postgraduate School
Monterey, CA

36. LT Patrick Sullivan, USN

Naval Postgraduate School
Monterey, CA

37. David Zeltzer

Northrop Grumman Corp. (HQ)
Los Angles, CA

38. J. Riley Goodin
Northrop Grumman Corp. (HQ)
Los Angles, CA

39. David Colleen
Planet 9 Studios
San Francisco, CA

40. Dan Ancona
Planet 9 Studios
San Francisco, CA

41. Chris Greuel
Planet 9 Studios
San Francisco, CA

42. Ayman El-Swaify
NAVFAC Information Technology Center
Port Hueneme, CA

43. Robert Seligman

Science Applications International Corporation
San Diego, CA

44. Margaret Bailey
Sonalysts, Inc.
Waterford, CT

 148

45. Dallas Meggit
Sound and Sea Technology
Edmonds, WA

46. Dennis Garrood
Sound and Sea Technology
Edmonds, WA

47. Larry Ambruster
Sound and Sea Technology
Edmonds, WA

48. Mario Pozzo
Sound and Sea Technology
Edmonds, WA

49. Ron Brackett
Sound and Sea Technology
Edmonds, WA

50. MAJ Darryl Ahner, USA
Training and Doctrine Command
Monterey, CA

51. Bill Posage

USCG Research and Development Center
Groton, CT

52. LT Charles Adams, USN
USS Bonhomme Richard (LHD 6)
San Diego, CA

53. Alan Hudson
Yumetech, Inc.
Seattle, WA

54. Dr. Julie Seton
Advanced Systems Technology, Inc.
White Sands Missile Range, NM

55. Manoj K. Bhardwaj

Sandia National Laboratories
Albuquerque, NM

 149

56. COL George Stone, USA
Battle Command, Simulation and Experimentation
Arlington, VA

57. William Duval

Army Modeling and Simulation Office
Arlington, VA

58. Robert Wiebe
Boeing Phantom Works
Seal Beach, CA

59. Skip Garrett
Center for Asymmetric Warfare
Point Mugu, CA

60. Frank Greitzer
Center for Asymmetric Warfare
Point Mugu, CA

61. Patrick Connor
Commander, Naval Installations Command
Anacostia Annex, DC

62. Adam Davidson
Commander United States pacific Fleet
Pearl Harbor, HI

63. Shawn Hynes
Commander Operational Test and Evaluation Force
Norfolk, VA

64. CAPT David Yoshihara, USN (Ret.)

Commander United States Pacific Fleet
 Pearl Harbor, HI

65. COL Jerry Glasow

Defense Modeling and Simulation Office
Alexandria, VA

66. Kenn Atkinson
Defense Modeling and Simulation Office
Alexandria, VA

 150

67. David McDarby
Defense Threat Reduction Agency
Fort Belvoir, VA

68. Kenneth De Jong
George Mason University
Fairfax, VA

69. Dr. J. Mark Pullen
George Mason University
Fairfax, VA

70. Ron Hellbusch
L3/Titan
San Diego, CA

71. Dr. Michael Bailey
USMC Training and Education Command
Quantico, VA

72. MAJ J.P. McDonough, USMC

USMC Training and Education Command
Quantico, VA

73. Tom Stefanick
Metron, Inc.
Reston, VA

74. Tim Spivak
Navy Antiterrorism Technology Coordination Office
Washington, DC

75. Steven Iselin

Naval Facilities Engineering Command (HQ)
Washington, DC

76. CAPT Taylor Skardon, USN
NAVSTA Pearl Harbor
Pearl Harbor, HI

77. CDR Douglas Holderman
NAVSTA Pearl Harbor
Pearl Harbor, HI

 151

78. LT Edward Twigg
NAVSTA Pearl Harbor
Pearl Harbor, HI

79. Bill Seelig

Naval Facilities Engineering Command (HQ)
Washington, DC

80. John Moore
Navy Modeling and Simulation Office
Washington, DC

81. James Ehlert
Naval Postgraduate School
Monterey, CA

82. Dr. John Sokowloski
Old Dominion University
Norfolk, VA

83. Dr. Andreas Tolk
Virginia Modeling and Analysis Center
Suffolk, VA

84. Erik Chaum
Naval Undersea Warfare Center
Newport, RI

85. Richard Lee
Office of the Secretary of Defense – Acquisition, Technology and Logistics
Washington, DC

86. Albert Giambalvo
Office of the Secretary of Defense – Acquisition, Technology and Logistics
Washington, DC

87. M. K. Tribble
Office of the Secretary of Defense – Acquisition, Technology and Logistics
Washington, DC

88. Dr. Jay Roland
Roland and Associates
Monterey, CA

 152

89. Dr. Kathrine Morse
SAIC (HQ)

 San Diego, CA

90. E. Belinger
SAIC (HQ)
San Diego, CA

91. Mike Irwin
Sandia National Laboratories
Albuquerque, NM

92. L.A. Cano
Sandia National Laboratories
Albuquerque, NM

93. Edward Bender
Space and Naval Warfare Systems Command
San Diego, CA

94. LTC Michael Kuchta, USAF
Department of the Air Force
Washington, DC

95. Jack Jackson
Training and Doctrine Command
Monterey, CA

96. Jeff Stahl
Research, Development and Education Command
Aberdeen Proving Ground, MD

97. G. Guy Thomas
Maritime Domain Awareness Program Integration Office
Washington, DC

98. Alex Vianna

Naval Facilities Engineering Command (HQ)
Washington, DC

 153

